首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Peristaltic flow of non-Newtonian nano fluid through a non-uniform surface has been investigated in this paper. The fluid motion along the wall of the surface is caused by the sinusoidal wave traveling with constant speed. The governing equations are converted into cylindrical coordinate system and assuming low Reynolds number and long wave length partial differential equations are simplified. Analytically solutions of the problem are obtained by utilizing the homotopy perturbation method (HPM). In order to insight the impact of embedded parameters on temperature, concentration and velocity some graphs are plotted for different peristaltic waves. At the end, some observations were made from the graphical presentation that velocity, pressure rise and nano particle concentration are increasing function of thermophoresis parameter Nt while temperature and frictional forces show opposite trend.  相似文献   

2.
This Letter looks an analysis for withdrawal of cylinder. The flow depends upon the wire velocity. The fluid considered is a fourth order fluid. The problem is modeled using cylindrical coordinates for velocity and pressure distributions. The solution of the governing equation is obtained using homotopy analysis method (HAM). The variations of the velocity, volume flow rate, radius of coated wire, shear stress and force on the total wire are presented graphically and discussed for emerging non-Newtonian parameter.  相似文献   

3.
This paper is devoted to a study of the peristaltic motion of a Casson fluid of a non-Newtonian fluid accompanied in a horizontai tube.To characterize the non-Newtonian fluid behavior,we have considered the Casson fluid model.Suitable similarity transformations are utilized to transform the governing partial differential momentum into the non-linear ordinary differential equations.Exact analytical solutions of these equations are obtained and are the properties of velocity,pressure and profiles are then studied graphically.  相似文献   

4.
In this paper, a smooth repetitive oscillating wave traveling down the elastic walls of a non-uniform twodimensional channels is considered. It is assumed that the fluid is electrically conducting and a uniform magnetic field is perpendicular to flow. The Sisko fluid is grease thick non-Newtonian fluid can be considered equivalent to blood. Taking long wavelength and low Reynolds number, the equations are reduced. The analytical solution of the emerging non-linear differential equation is obtained by employing Homotopy Perturbation Method(HPM). The outcomes for dimensionless flow rate and dimensionless pressure rise have been computed numerically with respect to sundry concerning parameters amplitude ratio ?, Hartmann number M, and Sisko fluid parameter b1. The behaviors for pressure rise and average friction have been discussed in details and displayed graphically. Numerical and graphical comparison of Newtonian and non-Newtonian has also been evaluated for velocity and pressure rise. It is observed that the magnitude of pressure rise is maximum in the middle of the channel whereas for higher values of fluid parameter it increases. Further, it is also found that the velocity profile shows converse behavior along the walls of the channel against multiple values of fluid parameter.  相似文献   

5.
An analysis of the boundary layer flow and heat transfer in a Jeffrey fluid containing nanoparticles is presented in this paper. Here, fluid motion is due to a stretchable cylinder. The thermal conductivity of the fluid is taken to be temperature-dependent. The partial differential equations of velocity, temperature, and concentration fields are transformed to a dimensionless system of ordinary differential equations. Nonlinear governing analysis is computed for the homotopy solutions. The behaviors of Brownian motion and thermophoresis diffusion of nanoparticles have been examined graphically. Numerical values of the local Nusselt number are computed and analyzed.  相似文献   

6.
The Brinkman equations of fluid motion are a model of flows in a porous medium. We develop the exact solution of the Brinkman equations for three-dimensional incompressible flow driven by regularized forces. Two different approaches to the regularization are discussed and compared on test problems. The regularized Brinkman model is also applied to the unsteady Stokes equation for oscillatory flows since the latter leads to the Brinkman equations with complex permeability parameter. We provide validation studies of the method based on the flow and drag of a solid sphere translating in a Brinkman medium and the flow inside a cylindrical channel of circular cross-section. We present a numerical example of a swimming organism in a Brinkman flow which shows that the maximum swimming speed is obtained with a small but non-zero value of the porosity. We also demonstrate that unsteady Stokes flows with oscillatory forcing fall within the same framework and are computed with the same method by applying it to the motion of the oscillating feeding appendage of a copepod.  相似文献   

7.
Nanoparticles play a radical role in oncology treatment especially nanoparticles of gold (Au NPs). Among the substantial properties of Au NPs is the possession of a large atomic number, which helps in the treatment of tumors. Furthermore, it is employed to encapsulate large numbers of therapeutic compounds. Also, the alternating electric field therapy (AC electro-kinetics, called tumor treating fields TTF), is used in malignancy oncology therapy (MOT). The aim of this article is to investigate the blood flow characteristics under the influence of AC electric field and heat transfer in the presence of Au and Cu-NPs through a symmetric elastic sinusoidal channel. The governing equations of the Jeffrey fluid (blood model) along with total mass, thermal energy, and the electric potential equations are simplified by using the postulate of long wavelength approximation. The expressions of the axial velocity field, stream function, pressure gradient, the temperature distribution, and the electric potential field are obtained by using DSolve program in Mathematica software (version 10). Influence of the materialistic parameters like the Jeffrey parameter, volume fraction, Grashof number, and electric Rayleigh number on the velocity profile, temperature distribution, electrical potential, pressure gradient, pressure rise, and entropy generation are considered. Two different nanofluid suspensions are investigated (Au and Cu NPs). The results pointed out that the Au-NPs are efficacious for drug carrying and drug delivery systems, this is evidenced by the velocity in the case of Au-NPs greater than in the case of Cu-NPs. Also, when the electrical Raleigh number increases, an electric force is generated to reverse the wave propagation.  相似文献   

8.
The motivation behind this article is to research the Newtonian liquid flow porous stretching/shrinking sheet utilizing a Brinkman model. The leading system of non-linear partial differential equations relating the article is mapped to standard ordinary differential equations via similarity transformations. Exact result is obtained for velocity. The effects of the Brinkman number or viscosity ratio, slip parameter, Darcy number, suction/injection (mass transpiration) parameter and the mass suction parameter on the velocity dispersion are introduced graphically and talked about. The outcomes have conceivable innovative applications in extrusion process and such other unified zones and in the fluid based frameworks including stretchable materials. Examination of fluid flow past a permeable stretching/shrinking sheet embedded in a non-Darcy permeable medium has been performed for a wide scope of various parameters. Exact solution has been obtained.  相似文献   

9.
Effect of coiling in a cochlear model   总被引:2,自引:0,他引:2  
Transformation of the three-dimensional equations of fluid motion into cylindrical coordinates allowed analysis of a coiled cochlear model by the WKB technique. The model includes a single transverse mode of basilar membrane deflection and inviscid fluid. The results calculated using realistic parameters for the guinea pig show no significant difference in the basilar membrane amplitude and phase between the straight and coiled models. Some differences exist in the fluid pressure found in the scala. The conclusion is that the macromechanical response is not significantly affected by coiling.  相似文献   

10.
The unsteady laminar flow of an electrically conducting viscous fluid between parallel insulating plates subject to a transverse magnetic field is considered. The plates are fixed and flow is due to a constant pressure gradient. The induced field is taken into account. The fluid is incompressible and of couple stress type. The defining equations are coupled and numerical solutions for different values of couple stress parameter are obtained. The velocity and induced magnetic field profiles are sketched as functions of time, Hartmann number, and magnetic Prandtl number. The velocity decreases with increase in couple stress parameter.  相似文献   

11.
We obtain an approximate global stationary and axisymmetric solution of Einstein’s equations which can be considered as a simple star model: a self-gravitating perfect fluid ball with constant mass density rotating in rigid motion. Using the post-Minkowskian formalism (weak-field approximation) and considering rotation as a perturbation (slow-rotation approximation), we find second-order approximate interior and exterior (asymptotically flat) solutions to this problem in harmonic and quo-harmonic coordinates. In both cases, interior and exterior solutions are matched, in the sense of Lichnerowicz, on the surface of zero pressure to obtain a global solution. The resulting metric depends on three arbitrary constants: mass density, rotational velocity and the star radius at the non-rotation limit. The mass, angular momentum, quadrupole moment and other constants of the exterior metric are determined by these three parameters. It is easy to check that Kerr’s metric cannot be the exterior part of that metric.  相似文献   

12.
We report instability of the single-walled carbon nanotubes(SWCNT) filled with non-Newtonian Jeffrey fluid.Our objective is to get the influences of relaxation time and retardation time of the Jeffrey fluid on the vibration frequency and the decaying rate of the amplitude of carbon nanotubes.An elastic Euler-Bernoulli beam model is used to describe vibrations and structural instability of the carbon nanotubes.A new vibration equation of an SWCNT conveying Jeffrey fluid is first derived by employing Euler-Bernoulli beam equation and Cauchy momentum equation taking constitutive relation of Jeffrey fluid into account.The complex vibrating frequencies of the SWCNT are computed by solving a cubic eigenvalue problem based upon differential quadrature method(DQM).It is interesting to find from computational results that retardation time has significant influences on the vibration frequency and the decaying rate of the amplitude.Especially,the vibration frequency decreases and critical velocity increases with the retardation time.That is to say,longer retardation time makes the SWCNT more stable.  相似文献   

13.
14.
The phenomena of heat and mass transfer during the flow of non-Newtonian transfer are amongst the core subjects in mechanical sciences. Recently, the nanomaterials are among the eminent tools for improving the low thermal conductivity of working fluids. Therefore, in view of the existing contributions, this article presents a two-dimensional numerical simulation for the transient flow of a non-Newtonian nanofluid generated by an expanding/contracting circular cylinder. This critical review further explores the impacts of variable magnetic field, thermal radiation, velocity slip and convective boundary conditions. The basic governing equations for Williamson fluid flow are formulated with the assistance of boundary layer approximations. The non-dimensional form of partially coupled ordinary differential equations has been tackled numerically by utilizing versatile Runge–Kutta integration scheme. The momentum, thermal and concentration characteristics are investigated with respect to several critical parameters, like, Weissenberg number, unsteadiness parameter, viscosity ratio parameter, slip parameter, suction parameter, magnetic parameter, thermophoresis parameter, Brownian motion parameter, Prandtl number, Lewis number and Biot number. The outcomes of the systematic reviews of these parameters and forest plots are illustrated. The study reveals that multiple solutions for the considered problem occurs for diverse values of involved physical parameters. The computed results indicate that the friction and heat transfer coefficients are significantly raised by the magnetic parameter for upper branch solutions.  相似文献   

15.
This Communication deals with the blood flow of Prandtl fluid through a tapered stenosed arteries having permeable walls.The governing equations of two-dimensional Prandtl fluid model are modelled in cylindrical coordinates.The highly nonlinear equations are simplified with the help of non-dimensional variables under the assumption of mild stenosis.The solution of reduced nonlinear equation subject to boundary condition of porous walls having the effects of Darcy's number and slip parameter are computed analytically with the help of perturbation method.Effects of emerging parameters such as impedance A,slip parameter a,stenosis height 6,magnetic parameter and stress component Srz on velocity are illustrated graphically.The streamlines have also been presented to discuss the trapping bolus discipline.  相似文献   

16.
This work investigates the effect of entropy generation rate within the flow of two immiscible micropolar fluids in a horizontal channel bounded by two porous beds at the bottom and top. The flow is considered in four zones. Zone IV contains the flow of viscous fluid in the large porous bed at the bottom, zone I and zone II contain the free flow of two immiscible micropolar fluids, and zone III contains the flow of viscous fluid in the thin porous bed at the top. The flow is assumed to be governed by Eringen’s micropolar fluid flow equations in the free channel. Darcy’s law and Brinkman’s model are used for flow in porous zones, namely, zone IV and zone III, respectively. The closed form expressions for entropy generation number and Bejan number are derived in dimensionless formby using the expressions of velocity, microrotation and temperature. The effect of physical parameters like a couple stress parameter and micropolarity parameter on velocity, microrotation, temperature, entropy generation number and Bejan number are investigated.  相似文献   

17.
This paper investigates the rheological effects of non-Newtonian fluids on the natural convection mechanism in a porous medium. A non-Newtonian behavior of power law fluid with a yield stress, saturating a porous medium, in which yield stress is temperature dependent, is considered. The cases of constant temperature boundary and constant heat flux boundary, along the heated vertical cylinder, are analyzed. The approximate similarity solutions in a closed form are shown, from which the velocity and temperature profiles are determined. The numerical solutions for a constant temperature boundary are also shown and discussed.  相似文献   

18.
J. Yan  J.X. Liu  X. Zhu 《Applied Acoustics》2008,69(8):681-690
A submerged cylindrical shell reinforced by supports of rings and bulkheads is the primary structure of submarine, torpedo and all kinds of submerged aircrafts, so it is significant to study its characteristics of structure-borne sound. By means of periodic structure theory, the input power flow from a cosine harmonic line force into a submerged infinite cylindrical shell, reinforced by doubly periodic supports of rings and bulkheads, is studied analytically. The harmonic motion of the shell and the sound pressure field in the fluid are described by Flügge shell equations and Helmholtz equation, respectively. Since the fluid radical velocity and the shell radical velocity must be equal at the interface of the outer shell wall and the fluid, the motion equations of this coupled system are obtained. Both four kinds of forces (moments) between rings and shell and four kinds of forces (moments) between bulkheads and shell are considered. The solution is obtained in series form by expanding the system responses in terms of the space harmonics of the spacings of both stiffeners and bulkheads. The input vibrational power flow into the structure is obtained and the influences of different structural parameters on the results are analyzed. The analytic model is close to engineering practice, and it will give some guidelines for noise reduction of this kind of shell.  相似文献   

19.
In this paper, flow analysis for a third grade non-Newtonian blood in porous arteries in presence of magnetic field is simulated analytically and numerically. Blood is considered as the third grade non-Newtonian fluid containing nanoparticles. Collocation Method (CM) and Optimal Homotopy Asymptotic Method (OHAM) are used to solve the Partial Differential Equation (PDE) governing equation which a good agreement between them was observed in the results. The influences of the some physical parameters such as Brownian motion parameter, pressure gradient and thermophoresis parameter, etc. on temperature, velocity and nanoparticles concentration profiles are considered. For instance, increasing the thermophoresis parameter (Nt) caused an increase in temperature values in whole domain and an increase in nanoparticles concentration near the inner wall.  相似文献   

20.
B.U. Felderhof 《Physica A》2008,387(24):5991-5998
The transient settling in a viscous incompressible fluid of a spherical dilute cloud of particles starting from rest under the influence of a small constant applied force is studied in a continuum model on the basis of the linearized Navier-Stokes equations. Explicit expressions are derived for the motion of the cloud and for the flow velocity and pressure of the fluid. Equations of transient Stokesian dynamics are formulated that allow numerical study of the motion of a dilute cloud of particles of arbitrary initial configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号