首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article reports the result of a computational study on the reaction of hydrazoic acid and trimethylindium (TMIn), coadsorbed on TiO2 rutile (110) surface. The adsorption geometries and energies of possible adsorbates including HN3-In(CH3)3(a) and its derivatives, HN3-In(CH3)2(a), N3-In(CH3)2(a), N3-In(CH3)(a), and N-In(a), have been predicted by first-principles calculations based on the density functional theory (DFT) and the pseudopotential method. The mechanisms of these surface reactions have also been explicitly elucidated with the computed potential energy surfaces. Starting from the interaction of three stable HN3 adsorbates, HN3-Ob(a), H(N2)N-Ob(a), and Ti-NN(H)N-Ob(a), where Ob is the bridged O site on the surface, with two stable intermediates from the adsorption and dissociative adsorption of TMIn, (H3C)3In-Ob(a) and (H3C)2In-Ob(a)+H3C-Ob(a), InN products can be formed exothermically via four reaction paths following the initial barrierless In-atom association with the N atom directly bonded to H, by CH4 elimination (with approximately 40 kcal/mol barriers), the InN-N bond breaking and the final CH3 elimination or migration (with <20 kcal/mol barriers). These Langmuir-Hinshelwood processes producing the two most stable InN(a) side-on adsorptions confirm that HN3 and TMIn are indeed very efficient precursors for the deposition of InN films on TiO2 nanoparticles. The result of similar calculations for the reactions occurring by the Rideal-Eley mechanism involving HN3(a)+TMIn(g) and HN3(g)+TMIn(a) indicates that they are energetically less favored and produce the less stable InN(a) with end-on configurations.  相似文献   

2.
The ZnO nanorod growth mechanism during liquid-phase deposition (LPD) has been investigated, with results considered in the context of phase stabilization, LPD chemical processes, and Gibbs free energy and entropy. Zinc oxide (ZnO) possesses unique optical and electronic properties, and obtaining ZnO species with high specific surface area is important in ZnO applications. Highly c-axis-oriented ZnO films are expected to be utilized in future optical and electrical devices. ZnO nanorods were synthesized using an aqueous solution deposition technique on a glass substrate with a free-standing ZnO nanoparticle layer. ZnO nanorod growth was easily controlled on the nanoscale by adjustment of the immersion time (15-210 min). X-ray diffraction, field-emission scanning electron microscopy (FE-SEM), and film thickness measurements were used to characterize the crystalline phase, orientation, morphology, microstructure, and growth mechanism of the ZnO nanorods. FE-SEM images were analyzed by image processing software, which revealed details of the of ZnO nanorod growth mechanism.  相似文献   

3.
Strong hydrogen bonding and pi-pi stacking between 1-pyrylphosphonic acid (PYPA) molecules were exploited to create self-assembled two-dimensional supramolecular structures. Polycrystalline films of these laminate crystalline PYPA bilayers were easily deposited onto the solid supports through a simple spin-coating technique. Atomic force microscopy (AFM), scanning tunneling microscopy (STM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis absorption, and fluorescence spectroscopy reveal that processing parameters, such as solvent, concentration, and surface of the substrate, are critical factors in determining the final morphology of the stacked film. Robust laminate structures could be obtained only when short alkyl chain protic solvents (methanol or ethanol) and a nonhydrophobic substrate surface were used. Polycrystalline films were formed through the nucleation and growth of PYPA molecules into laminate structures at the air/solvent interface before they land on the substrate during the spin-coating process. These films possess good mechanical properties and were easily transferred onto a SiO2/Si substrate that was patterned with Au electrodes without breaking their crystalline structures. The successful transfer of the laminate crystals allows us to probe their electrical properties through a field effect transistor device. A gating effect on the charge transport of the stacked films indicates that PYPA laminate crystal possesses p-typed semiconductor characteristics.  相似文献   

4.
High-quality MgxZn1-xO thin films were grown on sapphire(0001 ) substrates with a ZnO buffer layer of different thicknesses by means of metal-organic chemical vapor deposition. Diethyl zinc, bis-cyclopentadienyl-Mg and oxygen were used as the precursor materials. The crystalline quality, surface morphologies and optical properties of the Mg, Zn1-xO films were investigated by X-ray diffraction, atomic force microscopy and photoluminescence spectrometry. It was shown that the quality of the MgxZn1-xO thin films depends on the thickness of the ZnO buffer layer and an Mg, Zn1-xO thin film with a ZnO buffer layer whose thickness was 20 nm exhibited the best crystal-quality, optical properties and a flat and dense surface.  相似文献   

5.
CuInSe2 (CIS) films with good crystalline quality were synthesized by electrodeposition followed by annealing in Se vapor at 530 oC. The morphology, composition, crystal structure, optical and electrical properties of the CIS films were investigated by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Raman spectroscopy, UV-VIS-NIR spectroscopy, and admittance spectroscopy. The results revealed that the annealed CIS films had chalcopyrite structure and consisted of relatively large grains in the range of 500-1000 nm and single grain of films extend usually through the whole film thickness. The band gap of CIS films was 0.98 eV and carrier concentration was in the order of 1016 cm-3 after etching the Cu-Se compounds on the film surface. Solar cells with the structure of AZO/i-ZnO/CdS/CIS/Mo/glass were fabricated. Current density vs. voltage test under standard reported condition showed the solar cells with an area of 0.2 cm2 had a conversion efficiency of 0.96%. The underlying physics was also discussed.  相似文献   

6.
Using self-assembled monolayers (SAMs), highly crystalline bismuth sulfide thin films with low electrical resistivity have been prepared from aqueous solution at low temperature (40-70 degrees C). The nucleation and growth process of Bi2S3 thin films was investigated in detail by XPS, AES, SEM, XRD, SAED, and HRTEM. Solution conditions have marked effects on the microstructure, growth rate, and mechanism of Bi2S3 films. Increased solution temperature resulted in a higher growth rate and a shorter induction time due to a higher supersaturation degree. In the solution of pH 1.12, homogeneous nucleation and the attachment process dominated the formation of Bi2S3 films. In contrast, at pH 0.47 Bi2S3 thin films were formed via heterogeneous nucleation and growth. The c-axial orientation of bismuthinite films was enhanced with the increase of reaction time. By controlling the solution supersaturation and reaction duration, highly crystalline Bi2S3 films composed of closely packed and coalescent crystallites could be realized, whose dark electrical resistivity could reach as low as 0.014 Omega cm without any post-treatment.  相似文献   

7.
沉积电位对电沉积ZnS薄膜的影响   总被引:1,自引:0,他引:1  
采用电沉积方法,在不同沉积电位条件下,在氧化锡铟(ITO)导电玻璃上沉积制备了ZnS薄膜,利用XRD、SEM和UV-VIS测试技术对在不同沉积电位所制备薄膜的晶相结构、表面微观形貌和光学性能进行了表征.研究结果表明:沉积电位在1.5 V—1.7 V范围内制备的ZnS薄膜呈非晶态,其可见光透过率从60 %降低到20 %,薄膜的光学带隙约为3.97 eV.在沉积电位为2.0 V条件下所沉积薄膜为ZnS结晶相和金属Zn混合相,薄膜透过率显著降低.  相似文献   

8.
<正>Transparent thin films of ZnO have been prepared on ordinary glass substrates by the inorganic sol-gel method using citric acid as chelating agent and zinc nitrate as the starting material.A novel structure on zinc citrate complex was put forward by using DTA-TG and FT-IR absorbance spectrum of citrate gels.Phase formation,morphology and optical properties of ZnO films are investigated by XRD,AFM and UV-vis transmittance spectra.The experimental results show that ZnO thin films derived from zinc citrate sol-gel method showed a(002)oriented hexagonal wurtzite structure,good crystalline property,a uniform range of grain size(40 nm), smooth surface of films,band gap of 3.28 eV and optical transmittances ratio over 90%in the visible range.  相似文献   

9.
In present study, ZnO/SnO2/ZnO/SnO2/ZnO multi–layer, ZnO/SnO2/ZnO triple layer and ZnO single layer films have been deposited on glass substrate by sol–gel dip–coating technique. The structural and optical properties of thin films have been investigated by X-ray diffractometer, UV–visible, photoluminescence spectroscopies and scanning electron microscopy. The structural analysis reveals structural inhomogeneities and different crystallite growth processes as function of number of deposited layers. A comparison between photocatalytic activity of zinc oxide samples toward photodegradation of phenol, 4-aminophenol and 4-nitrophenol has been performed under UV light irradiation. Experiments were conducted to study the effects of operational parameters on the degradation rate. Pseudo-first-order photodegradation kinetics was observed on all films and the reaction constants were determined. The results showed that the photocatalytic activity of ZnO multi–layer film was superior to that of the ZnO single- and triple-layer films. Differences in film efficiencies can be attributed to differences in crystallinity, surface morphology, defect concentration of oxygen vacancy and to presence of SnO2 sublayer that may act as trap for electrons generated in the ZnO layer thus preventing electron–hole recombination. The results reveal that SnO2 hetrojunction layers improve crystalline quality, optical and photocatalytic properties of ZnO multilayered films.  相似文献   

10.
Cubic SiC (3C-SiC) films were deposited on on-axis 6H-SiC (0001) substrates by low-pressure chemical vapor deposition (LPCVD). The result of X-ray diffraction patterns shows that the 3C-SiC films were of good crystalline quality. The influence of the growth parameters (flow rates of the gas sources and growth temperature) on the growth rate of the SiC films is discussed. The results show that the transport of silane or its reaction products is the limiting factor for the growth. The surface morphology of the SiC films was observed by atomic force microscope imaging. From these results it can be concluded that the growth of the films is in agreement with a Stranski-Krastanov growth mode.  相似文献   

11.
有机-无机卤化物钙钛矿是一类优异的光电材料. 在过去四年内, 基于有机-无机卤化物钙钛矿的光电器件实现了超过15%的光电转换效率. 而有机-无机卤化物钙钛矿材料的可控制备是保证其在光电器件中应用的基础. 本文采用新的沉积方法在玻璃衬底表面制备了一种典型的有机-无机卤化物钙钛矿CH3NH3PbI3薄膜. 其制备过程是: 采用超声辅助的连续离子吸附与反应法在玻璃衬底表面沉积PbO-PbI2复合物膜, 之后与CH3NH3I蒸汽在110 ℃环境下反应, 将PbO-PbI2复合物膜转化成CH3NH3PbI3钙钛矿薄膜. 对CH3NH3PbI3薄膜的微观结构, 结晶性及其光电性能等进行了表征. 结果表明, CH3NH3PbI3薄膜呈晶态, 具有典型的钙钛矿晶体结构. 薄膜表面形貌均匀, 晶粒尺寸超过400 nm. 在可见光范围, CH3NH3PbI3薄膜透过率低于10%, 能带宽度为1.58eV. 电学性能研究表明CH3NH3PbI3薄膜表面电阻率高达1000 MΩ. 高表面电阻率表明CH3NH3PbI3薄膜具有一定的介电性能, 其介电常数(εr)在100 Hz时达到155. 本研究提出了一种制备高质量CH3NH3PbI3钙钛矿薄膜的新方法, 所得CH3NH3PbI3薄膜可望在光、电及光电器件中得到应用.  相似文献   

12.
Thin films of CuInS2 were grown on glass substrate by successive ionic layer adsorption and reaction method with different [Cu]/[In] ratios and annealed at 400 °C for 30 min. The crystal structure and grain sizes of the thin films were characterized by X-ray diffraction method. Atomic force microscopy was used to determine surface morphology of the films. Optical and electrical properties of these films were investigated as a function of [Cu]/[In]ratios. The electrical resistivity of CuInS2 of thin films was determined using a direct current-two probe method in the temperature range of 300—470 K. It is observed that, the electrical resistivity values show a big decreasing with increasing [Cu]/[In] ratio. Hence, the [Cu]/[In] ratio in the solution can drastically affect the structural, electrical, and optical properties of thin films of CuInS2.  相似文献   

13.
The reactions of trimethylindium (TMIn) with HN3 and NH3 are relevant to the chemical vapor deposition of indium nitride thin film. The mechanisms and energetics of these reactions in the gas phase have been investigated by density functional theory and ab initio calculations using the CCSD(T)/Lanl2dz//B3LYP/Lanl2dz and CCSD(T)/Lanl2dz//MP2/Lanl2dz methods. The results of both methods are in good agreement for the optimized geometries and relative energies. These results suggest that the reaction with HN3 forms a new stable product, dimethylindiumnitride, CH3-In=N-CH3 via another stable In(CH3)2N3 (dimethylindium azide, DMInA) intermediate. DMInA may undergo unimolecular decomposition to form CH3InNCH3 by two main possible pathways: (1) a stepwise decomposition process through N2 elimination followed by CH3 migration from In to the remaining N atom and (2) a concerted process involving the concurrent CH3 migration and N2 elimination directly giving N2+CH3InNCH3. The reaction of TMIn with NH3 forms a most stable product DMInNH2 following the initial association and CH4-elimination reaction. The required energy barrier for the elimination of the second CH4 molecule from DMInNH2 is 74.2 kcal/mol. Using these reactions, we predict the heats of formation at 0 K for all the products and finally for InN which is 123+/-1 kcal/mol predicted by the two methods. The gas-phase reaction of HN3 with TMIn is compared with that occurring on rutile TiO2 (110). The most noticeable difference is the high endothermicity of the gas-phase reaction for InN production (53 kcal/mol) and the contrasting large exothermicity (195 kcal/mol) released by the low-barrier Langmuir-Hinshelwood type processes following the adsorption of TMIn and HN3 on the surface producing a horizontally adsorbed InN(a), Ti-NIn-O(a), and other products, CH4(g)+N2(g)+2CH3O(a) [J. Phys. Chem. B 2006, 110, 2263].  相似文献   

14.
左娟  陈营  林昌健  Andreas Erbe 《电化学》2013,19(5):409-417
介绍了近年作者课题组使用椭圆偏振技术研究金属锌表面氧化膜的形成,包括多晶锌表面自然氧化物薄膜的形成及其光学性能和电子结构、不同气氛自然氧化物膜的生长研究以及在碱性碳酸盐介质金属锌的电化学过程等方面的工作. 旨在通过原位和非原位椭圆偏振技术了解金属锌表面氧化物膜层的光、电性能以及膜层结构的改变和生长动力学,这对评估锌氧化层的总体性能有着重要意义.  相似文献   

15.
Summary: The present work is focused on the characterization of the surface properties and the mechanical properties of chlorinated polyisoprene films. Cross-linked polyisoprene films were treated with acidified hypochlorite solution and the influence of the chlorination time on the surface properties was determined by spectroscopic techniques including FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS). The surface morphology was investigated by scanning electron microscopy (SEM), optical microscopy and contact angle measurements. In addition, the effect of the chlorination time on the tensile strength and ageing stability of natural rubber latex gloves was investigated.  相似文献   

16.
循环伏安法的电扫描方式对苯胺聚合产物形貌影响的观察   总被引:1,自引:0,他引:1  
在含有0.2 mol.L-1苯胺的0.5 mol.L-1H2SO4溶液中,以扫描速度50 mV.s-1,扫描电位为-0.1~0.9 V,采用循环伏安法(CV),在金属Ti基体上,通过控制扫描方式分别得到了颗粒状、纤维状及管-片状的苯胺聚合产物,分析了形成不同形貌聚苯胺的原因,并通过扫描电子显微镜(SEM)、循环伏安法和电化学阻抗谱(EIS)对不同形貌聚苯胺的结构和性能进行了表征.结果表明,不同形貌聚苯胺的形成是由于聚苯胺的成核及生长模式不同,而无论何种形貌的聚苯胺膜都具有很大的比表面积和良好的导电性能,其中,管-片状聚苯胺的膜层阻抗最小,导电性能最好.  相似文献   

17.
We report structural factors affecting the optical properties of blown polyethylene films. Two types of blown polyethylene films of similar degrees of crystallinity were made from (1) single‐site‐catalyst high‐density polyethylene (HDPE; STAR α) and (2) Ziegler–Natta‐catalyst HDPE (ZN) resins. The STAR α film exhibited high clarity and gloss, whereas the ZN film was turbid. Small‐angle X‐ray scattering (SAXS), small‐angle light scattering (SALS), and optical microscopy gave quantitative and qualitative information regarding structure and orientation in the films. A new approach is described for determining the three‐dimensional lamellar normal orientation from SAXS. Both the clear STAR α and turbid ZN films had similar lamellar crystalline structures and long periods but displayed different degrees of orientation. It is demonstrated that optical haze is related to surface features that seem to be linked to the bulk morphology. The relationship between haze and structural orientation is described. The lamellar orientation is linked to rodlike structures seen in optical microscopy and SALS through a stacked lamellar or cylindrite morphology on a nanometer scale and through a fiberlike morphology on a micrometer scale. The micrometer‐scale, rodlike structures seem directly related to surface roughness in a comparison of index‐matched immersion and surface micrographs. The higher haze and lower gloss of the ZN film was caused by extensive surface roughness not observed in the STAR α film. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2923–2936, 2001  相似文献   

18.
Zinc oxide (ZnO) nano-polycrystalline films were successfully prepared by modified successive ionic layer adsorption and reaction at room temperature technique which was based on the alternate immersion of substrate in the alkaline zinc precursor and deionized water. ZnO films were formed through accumulation of ZnO crystal clusters. The synthesis, microstructure, and optical properties of ZnO nano-polycrystalline films were investigated. Prepared ZnO films exhibited wurtzite structure, with good surface morphology and optical properties. Ethanolamine was employed as a complex reagent, which improved the adsorption of zinc complex with substrate. Effects of technique parameters on the properties of ZnO nano-polycrystalline films were studied in detail. Some parameters, including cycle number of preparation, ratio of zinc to ethanolamine, pH value of precursor and zinc concentration, played key roles in the deposition of ZnO nano-polycrystalline films. Intensive and sharp ultraviolet emission peaks at about 400 nm could be observed in the photoluminescence spectra.  相似文献   

19.
《Solid State Sciences》2012,14(9):1282-1288
SnO2 thin films were deposited on glass substrates by using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature. The film thickness effect on characteristic parameters such as structural, morphological, optical and electrical properties of the films was studied. Also, the films were annealed in oxygen atmosphere (400 °C, 30 min) and characteristic parameters of the films were investigated. The X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) studies showed that all the films exhibited polycrystalline nature with tetragonal structure and were covered well on glass substrates. After the investigation of the crystalline and surface properties of the films, it was found that they were improving with increasing film thickness. Optical band gap decreased from 3.90 eV to 3.54 eV and electrical conductivity changed between 0.015–0.815 (Ω-cm)−1 as the film thickness increased from 215 to 490 nm. The refractive index (n), optical static and high frequency dielectric constants (ɛo, ɛ) values were calculated by using the optical band gap values as a function of the film thickness.  相似文献   

20.
The design, synthesis and properties of liquid-crystalline semiconducting oligothiophenes containing dithienothiophene (DTT), benzothiadiazole (BTZ) and carbazole (CBZ) rigid cores are described. The effect of molecular structure (shape, size and substitution) on their thermal behaviour and electrical properties has been investigated. Polarised optical microscopy (POM) and differential scanning calorimetry (DSC) analyses have revealed highly ordered smectic mesophases for most of the newly synthesised compounds. X-ray diffraction (XRD) studies performed at various temperatures have shown that the smectic order is retained in the crystalline state upon cooling across the transition temperature, affording cast films with a more favourable morphology for FET applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号