首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以磷酸二氢钠(NaH2PO4)为磷源, 通过溶剂热法制备了P掺杂的TiO2/C (P-TiO2/C)纳米管以改善TiO2的储锂性能. 电化学测试表明: P-TiO2/C负极具有高的比容量(在0.1 A•g-1的电流密度下达到335 mAh•g-1)、优异的倍率性能(在2.0 A•g-1的电流密度下为92 mAh•g-1)及循环性能(在1.0 A•g-1的电流密度下经过1000次循环后放电比容量仍维持在135 mAh•g-1). 并且, P-TiO2/C在2 mV•s-1时的赝电容贡献约为96%. 由P-TiO2/C负极和活性炭正极组装的锂离子电容器在250 W•kg-1的功率密度下能量密度能够达到74.7 Wh•kg-1. 此外, 该锂离子电容器在10000次循环后比电容保持率约为43%. 此外, 该器件在1.0 A•g-1下循环10000次后充满电仍可点亮18只红色的LED灯组成的“LIC”字样. 该工作为高性能锂离子电容器TiO2负极材料的设计提供了思路.  相似文献   

2.
全固态薄膜锂离子电池具有易微型化与集成化等优点,因此,非常适合为微系统供电。负极对全固态薄膜锂离子电池的性能有重要影响。现有电池通常采用金属锂作为负极,然而其枝晶生长问题及低的热稳定性限制了相应电池在工业、军事等高温、高安全场合应用。为此,本文系统研究了LiNbO3薄膜的电化学性能,结果表明:LiNbO3薄膜呈现高比容量(410.2 mAh·g-1)、高倍率(30C时比容量80.9 mAh·g-1)和长循环性能(2000圈循环后的容量保持率为100%),以及高的室温离子电导率(4.5×10-8 S·cm-1)。在此基础上,基于LiNbO3薄膜构建出全固态薄膜锂离子电池Pt|NCM523|LiPON|LiNbO3|Pt,其展现出较高的面容量(16.3μAh·cm-2)、良好的倍率(30μA·cm-2下比容量1.9μAh·cm-2)及长循环稳定性(300圈循环后的容量保持率...  相似文献   

3.
以Ni0.6Co0.2Mn0.2(OH)2和LiOH·H2O为前驱体,在LiOH·H2O不过量的条件下,采用简单的固相焙烧法,在910℃下制备出单晶LiNi0.6Co0.2Mn0.2O2(NCM622)。所得材料无需水洗、烘干、退火等处理,可直接用于电极浆料的制备。电化学测试表明,所得NCM622单晶具有较高的比容量和优异的循环稳定性。在0.1C电流下的首次放电比容量达到181.2 mAh·g-1,0.3C下的首次放电比容量为174.4 m Ah·g-1。在0.3C的电流密度下,经过300次循环,放电比容量为150.7 mAh·g-1,容量保持率为86.4%,经500次循环后,放电比容量仍有141.2 mAh·g-1,容量保持率为81.0%。该电化学性能优于850℃下焙烧的多晶NCM...  相似文献   

4.
转换型正极材料(FeF2)因高具有理论比容量、廉价与环境友好等优点而有望成为新一代锂离子电池正极材料,但其目前却受到本征导电性差、界面副反应与结构衰减等问题的严重制约。对此,本文利用静电纺丝技术将水溶性高分子聚合物负载金属氟化物前驱体,经预氧化和碳化处理后得到了内嵌FeF2纳米颗粒的导电碳纤维复合材料(FeF2@NFP),并探究了针对FeF2@NFP静电纺丝工艺的最佳碳化温度。在充/放电过程中,FeF2@NFP的碳基质可以发挥限域作用来抑制转换反应造成的体积变化和相分离等问题,从而稳定活性物质的结构,同时导电碳纤维可以为电子传输提供“快速通道”来改善FeF2的导电性。因此,FeF2@NFP作为锂离子电池正极材料在0.1 A·g-1电流密度下表现出了261.55 mAh·g-1的首次可逆比容量以及优异的循环稳定性,在100个循环后仍有243.20 mAh·g-1的剩余可逆...  相似文献   

5.
以偏苯三甲酸和六水合硝酸钴为原料,通过水热法合成了2种反应时间不同的钴基金属有机聚合物(Co-MOP)。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和N2吸附-脱附对Co-MOP材料进行了结构和形貌表征。将2种Co-MOP材料用作锂离子电池负极材料,并进行了电化学性能测试。结果表明,Co-MOP-12(水热反应12 h)展示出了优异的电化学性能,在100 mA·g-1的电流密度下,Co-MOP-12电极的首圈可逆比容量达到979 mAh·g-1,循环100圈后比容量高达1 345 mAh·g-1。  相似文献   

6.
采用溶剂热法和煅烧法制备了LiAlO2包覆Si纳米颗粒(Si@LiAlO2)的复合材料。Si@LiAlO2纳米颗粒具有开口和通道的树枝状结构。电化学性能测试表明,其在100 mA·g-1电流密度下循环100次后可逆容量为364.1 mAh·g-1。纳米复合材料的树枝状结构使其具有优越的循环性能。在树枝状结构中,纳米尺度的硅颗粒缩短了锂离子的传输路径,LiAlO2包覆层、孔隙和开口缓冲了硅在充放电过程中的体积变化。  相似文献   

7.
通过溶剂热反应-水热处理的途径,制备了无定形碳包覆的ZnS纳米晶体(ZnS@C)与还原氧化石墨烯(rGO)复合的ZnS@C/rGO复合材料,并用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)对复合材料进行了形貌和微观结构的表征。电化学测试结果表明,与ZnS@C和ZnS/rGO相比,所制备的ZnS@C/rGO复合材料显示了显著增强的电化学储锂性能,在100 mA·g-1电流密度下,其电化学储锂的首次可逆比容量为1 101 mAh·g-1,充放电循环100次后其可逆比容量为1 569 mAh·g-1。在不同电流密度下循环1 200次后,仍保持在2.0 A·g-1电流密度下有1 096 mAh·g-1的可逆比容量,显示了其稳定的长循环性能。  相似文献   

8.
采用静电纺丝技术制备出CaSnO3纳米纤维(CaSnO3 NFs)并作为模板,再经表面原位聚合酚醛树脂和碳化处理制得碳包覆CaSnO3纳米纤维(CaSnO3@C NFs)。使用X射线衍射、扫描电子显微镜、透射电子显微镜和X射线光电子能谱对材料的物相组成、形貌和微观结构进行了表征,通过循环伏安、恒电流充放电和交流阻抗谱研究了碳包覆及碳化温度对CaSnO3 NFs负极材料电化学性能的影响。结果显示,碳包覆改性使CaSnO3 NFs的电化学性能得到较大程度的提高,而且随着碳化温度的升高,CaSnO3@C NFs复合电极的比容量先增加后下降,600℃碳化获得的CaSnO3@C NFs?600复合材料具有最好的电化学性能。在0.1 A·g-1的电流密度下,CaSnO3@C NFs?600电极的首圈放电比容量达到1102.2 mAh·g-1,充放电循环100圈后比容量为548.8 mAh·g-1,当电流密度提高到2 A·g-1时,其比容量仍保持在333.5 mAh·g-1。  相似文献   

9.
以羟基纳米纤维素为原料,利用其表面丰富的羟基还原KMnO 4,在纳米纤维表面原位生成MnO2纳米颗粒,并与Super P混合,通过简单抽滤的方式获得CNF@MnO2/Super P自支撑正极。结果表明:无粘结剂的CNF@MnO2/Super P自支撑正极具有较高的循环稳定性,在0.5 A·g-1的电流密度下,循环800圈后,容量仍能达到247 mAh·g-1;均匀分布的纳米MnO2与Super P能够有效缩短离子和电子扩散路径,大大降低材料的电阻,使正极具有良好的倍率性能,在2 A·g-1的电流密度下,循环300圈之后,电池容量仍保持在175 mAh·g-1,库仑效率~99%;利用该正极良好的延展性,制备了软包电池,并表现出了较高的循环稳定性和容量保持率,该工作为柔性无粘结剂的水系Zn-MnO2二次电池的设计开发提供了新的研究思路。  相似文献   

10.
首先,将葡萄糖和尿素按1∶1的质量比进行混合,作为多孔造孔剂,以水热法和煅烧法制备多孔结构的前驱体Fe2O3。随后,通过碳热还原的方法在制备碳包覆核壳结构的同时将Fe2O3还原成Fe3O4。最后,通过溶剂热法使用还原氧化石墨烯(rGO)对核壳多孔Fe3O4(CP-Fe3O4@C)进行封装,形成三维层状复合材料,记为rGO-CP-Fe3O4@C。具有三维网络传输结构的rGO-CP-Fe3O4@C在0.3 A·g-1的电流密度下循环200圈之后的比容量为839 mAh·g-1。值得关注的是,rGO-CP-Fe3O4@C在6 A·g-1的大电流密度下充放电的比容量能够达到165 m...  相似文献   

11.
为考察不同锰源对所制备尖晶石LiMn2O4(LMO)电化学性能的影响(特别是高温性能),采用沉淀法制备前驱体,通过不同煅烧温度制备得到最常用的锰氧化物(MnO2、Mn2O3和Mn3O4)为锰源,经相同条件制备得到LMO正极材料,通过考察所得LMO形貌及电化学性能来研究锰源与LMO电化学性能的关系。研究结果表明,相同的前驱体在不同煅烧温度下可以得到不同的锰氧化物,且各自具有不同的形貌结构。由这些锰氧化物都可以得到高纯度的LMO,但产物形貌结构以及材料中的八面体晶体含量和尺寸不同。由Mn2O3制备得到的LMO材料中的八面体晶体含量最多,且尺寸最均匀,在3种LMO中容量性能、倍率性能和循环性能最好:0.2C(1C=148 mA·g-1)下首次放电比容量为131.8 mAh·g-1;3C下还有100.4 mAh·g-1的放电比容量。其...  相似文献   

12.
以单分散程度较高的SiO2纳米颗粒(约130 nm)作为填料,聚偏氟乙烯-六氟丙烯(PVDF-HFP)作为聚合物基质,采用简便的物理共混法制备出了一种单分散SiO2纳米颗粒复合凝胶聚合物电解质(MCGPEs)并将其应用于锂电池中。扫描电镜结果表明,SiO2纳米颗粒在聚合物基体中分散均匀。与传统凝胶聚合物电解质(GPEs)和商业SiO2颗粒复合凝胶电解质(CGPEs)相比,MCGPEs有着更高的电解液吸液能力和离子电导率,并且具备更强的锂离子迁移能力。此外,使用MCGPEs作为电解质的锂电池,在1.0C下历经300次循环后仍然保持了121.1 mAh·g-1的较高比容量,表现出了优异的循环性能。同时,其倍率性能也十分优异,在10C倍率下获得了135 mAh·g-1的比容量,远高于GPEs锂电池(76.2 mAh·g-1)。  相似文献   

13.
采用一步水热法制备了Bi12O17Br2光催化剂,其平均微片尺寸为1.2μm,比表面积约为29 m2·g-1。Bi12O17Br2的禁带宽度为2.42 eV,能够响应可见光。值得注意的是,在光照条件下Bi12O17Br2表面能够产生氧空位;光诱导氧空位不仅能促进氮气在催化剂表面的吸附,而且对吸附的氮气分子的活化起到至关重要的作用。实验结果表明在可见光照射下,Bi12O17Br2光催化剂上的氨生成速率为337.6μmol·g-1·h-1。在可见光的驱动下,Bi12O17Br2光催化剂能够实现氮气与水反应生成氨的过程。  相似文献   

14.
新型多孔碳纳米片/碳纳米管(PC/CNT)材料表现出丰富的分级孔隙结构,具有较高的氧化锡(SnO2)负载量。通过PC和CNT交联形成的三维结构能够有效地提高锂离子传输速率和电子的传导。此外,在电极中掺杂的氟化锂(LiF)不仅能够降低SnO2-PC/CNT-LiF电极的电荷转移电阻,而且还能补充SEI膜形成时消耗的Li+,降低不可逆容量,增强SEI膜的稳定性。研究表明,SnO2-PC/CNT-LiF电极在电流密度为100 mA·g-1时,首次可逆比容量达到1642.98 mAh·g-1,活性物质的利用率高达90.12%,循环100次后,放电比容量仍然达到745.11 mAh·g-1,且库仑效率仍然保持在95.1%以上,显示出优异的倍率和循环性能。  相似文献   

15.
低成本、高性能的钠离子电池有望成为代替锂离子电池的下一代核心器件.但是开发出高比容量、高倍率的钠离子电池负极材料依然是瓶颈.本文通过水热/溶剂热法制备了Co基前驱体,然后将其一步硫/磷热处理制得具有空心多孔结构的h-Co9S8/CoP/C纳米复合材料.通过X-射线粉末衍射(XRD)、拉曼光谱(Raman)、扫描电镜(SEM)、透射电镜(TEM)和X-射线光电子能谱(XPS)等表征以确定纳米复合物的物相以及形貌特征.当h-Co9S8/CoP/C作为钠离子电池负极材料时,该电极材料展示了高的比容量(561 mAh g-1@0.1 Ag-1)、较好的循环性能(可逆比容量200 mAh g-1@2 Ag-1)和倍率性能.h-Co9S8/CoP/C之所以显示出良好的储钠性能,主要得益于其空心多孔结构不仅提供更多的空间缓解钠在反复嵌入和脱出过程造成的体积膨胀效应,而且可以缩短离子/电荷扩散途径以加快反应动力学,此外,Co9S8、CoP和C独特的电子结构优势得以共同发挥.  相似文献   

16.
MOF衍生金属硒化物由于其有序的碳骨架结构和高导电性,被认为是钠离子电池极具前景的负极材料。它们具有快速的电子/离子输运通道,有利于钠离子的嵌入和脱出。然而,循环过程中的大量体积膨胀会导致结构坍塌。为了解决这个问题,通过表面改性在MOF衍生金属硒化物表面引入了一个二维的还原氧化石墨烯网络,既可以缓解体积变化,又能加速电子转移。实验证实这种策略是有效的,在1 A·g-1下500次循环后,包覆了还原氧化石墨烯的复合材料电极容量保持率提高到了95.2%。相比之下,不含还原氧化石墨烯的容量保留率仅为74.2%。此外,由于还原氧化石墨烯网络和MOF衍生In2Se3协同作用,在0.1 A·g-1下显示出了468 m Ah·g-1的优越容量。而在相同的电流密度下,未包覆还原氧化石墨烯的只产生393 m Ah·g-1的比容量。采用循环伏安法(CV)研究了In2Se3@C/rGO电极的电化学过程,结果表明其具有良好的电化学反应活性...  相似文献   

17.
锂硫电池具有高能量密度、低成本和环境友好等优势,有望满足市场日益增长的需求。然而,其正极材料中的活性物质硫存在溶解穿梭等问题,限制了锂硫电池的大规模应用。本文利用氧化石墨(GO)作为碳源、升华硫作为硫源,通过微波诱导等离子体技术(MIP)快速高效(30-40 s)地制备得到了还原氧化石墨烯负载硫纳米颗粒锂硫电池复合正极材料(rGO@S),其中,rGO褶皱卷曲、相互连接的层片状结构,有利于电解液中的锂离子向电极材料中扩散和迁移,同时有利于提高电极材料的导电性,且rGO上的含氧官能团也能够起到对硫纳米颗粒的固定作用,有利于电极材料循环稳定性的提升。得益于其独特的形貌结构,rGO@S在电池测试中表现出优异的倍率性能和良好的循环稳定性。在0.1 A·g-1的电流密度下,rGO@S的可逆比容量为1036 mAh·g-1,当电流密度增大到8 A·g-1其可逆比容量仍高达832 mAh·g-1,且经过8 A·g-1的超大电流密度充放循环,当电流密度回到0.1 A·g-1...  相似文献   

18.
刘黎  田方华  王先友  周萌 《物理化学学报》2011,27(11):2600-2604
采用低温固相法合成了具有纳米结构的LiV3O8材料.扫描电子显微镜(SEM)及透射电子显微镜(TEM)测试显示该材料具有纳米结构.X射线衍射(XRD)表明该材料属于单斜晶系,P21Im空间群.并采用循环伏安法(CV)及电化学阻抗谱图测试对该材料在1、2 mol·L-1Li2SO4水溶液及饱和Li2SO4水溶液中的电化学行为进行了研究.结果表明,LiV3O8在饱和Li2SO4水溶液中具有最好的电化学性能.以LiV3O8作为负极材料,LiNi1/3Co1/3Mn1/3O2作为正极材料,饱和Li2SO4水溶液作为电解液组成了水性锂离子电池,进行恒流充放电测试,结果表明,在0.5C(1C=300 mA·g-1)的充放电倍率下,该水性锂离子电池的首次放电比容量为95.2 mAh·g-1,循环100次后仍具有37.0 mAh·g-1的放电比容量.  相似文献   

19.
通过结合固相和液相包覆在Al掺杂LiCoO2表面共包覆了钛酸锂(Li4Ti5O12)和聚吡咯(PPy)。这种双包覆方法不仅稳定了高电压下LiCoO2的表面,还增强了材料的离子和电子电导率。电化学测试表明,当活性物质、导电剂和黏结剂的质量比为80∶10∶10时,在0.5C(1C=180 mA·g-1)电流下,循环300周后的容量保持率为76.9%,且在5C电流密度下可逆比容量为150 mAh·g-1;由于双包覆后LiCoO2电子电导率大幅提高,当活性物质、导电剂和黏结剂的质量比为90∶3∶7时,在0.5C电流下,循环200周后的容量保持率为82.8%,且在5C电流密度下可逆比容量为130 mAh·g-1。X射线光电子能谱测试表明,包覆层可以在循环中保持稳定且能抑制LiCoO2材料在高电压下的表面副反应。  相似文献   

20.
以泡沫镍作为基底,采用水热法原位生长出具有片状结构的NiMoO4活性材料,然后通过水热硫化制备出NiMoO4/NiMoS4复合材料,研究了水热时间和硫脲添加量对样品形貌和电化学性能的影响。电化学结果表明,NiMoO4/NiMoS4电极在电流密度为1A·g-1时,比电容为1560.7F·g-1,在电流密度为40A·g-1时循环2000次后,比电容仍为初始比电容的76.7%。将NiMoO4/NiMoS4电极材料与活性炭(AC)分别作为正、负极组装的非对称超级电容器(ASC)在400W·kg-1的功率密度下可提供29.0Wh·kg-1的能量密度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号