首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
This paper is devoted to study the modified holographic dark energy model by taking its different aspects in the flat Kaluza-Klein universe.We construct the equation of state parameter which evolutes the universe from quintessence region towards the vacuum.It is found that the modified holographic model exhibits instability against small perturbations in the early epoch of the universe but becomes stable in the later times.We also develop its correspondence with some scalar field dark energy models.It is interesting to mention here that all the results are consistent with the present observations.  相似文献   

2.
3.
Recent observations of the Cosmic Microwave Background, Supernovae and Sloan Digital Sky Survey (SDSS) show that our universe has a critical energy density, and roughly 2/3 of it is dark energy, which drives the accelerating expansion of the cosmos. In view of the astrophysical data, we find that the equation of state parameter of the dark energy lies in a narrow range around w = −1. In this paper, we construct a cosmology model with a Rarita-Schwinger field to realize the equation of state parameter w < −1 or w > −1 and discuss its stability.  相似文献   

4.
In this work we investigate the polytropic gas dark energy model in the non flat universe. We first calculate the evolution of EoS parameter of the model as well as the cosmological evolution of Hubble parameter in the context of polytropic gas dark energy model. Then we reconstruct the dynamics and the potential of the tachyon and K-essence scalar field models according to the evolutionary behavior of polytropic gas model.  相似文献   

5.
Within standard Newtonian gravity, galactic dark matter is modelled by a scalar field in order to effectively modify Kepler's law. In particular, we show that a solvable toy model with a self-interaction U() borrowed from non-topological solitons produces already qualitatively correct rotation curves. Although relativistic effects in the halo are very small, we indicate corrections arising from the general relativistic formulation.  相似文献   

6.
It has been shown that the set of the Einstein-Yang-Mills equations and the nonlinear scalar field have generalized solutions with a homogeneous scalar field, which interacts with the YM field in the Friedmann Universe.  相似文献   

7.
The inhomogeneous cosmological model with generalized nonstatic Majumdar-Papapetrou metric is considered. The scalar field with negative kinetic energy and some usual matter sources of the gravitational field such as two-component nonlinear sigma model and perfect fluid are presented. Some exact solutions in these models are obtained and analyzed. In particular it is shown that the latent mass effect and effect of accelerating expansion (quintessence) of the Universe exist in these models. The 5-dimensional generalization of the model is presented, too.  相似文献   

8.
We assume generalized ghost Pilgrim dark energy(GGPDE) model in the presence of cold dark matter in flat FRW universe.With suitable choice of interaction term between GGPDE and cold dark matter,we investigate the nature of equation of state parameter for GGPDE.Also,we investigate the natures of dynamical scalar field models(such as quintessence,tachyon,k-essence,and dilaton dark energy) and concerned potentials through the correspondence phenomenon between GGPDE and these models.  相似文献   

9.
In this work, we have tried to find out similarities between various available models of scalar field dark energies (e.g., quintessence, k-essence, tachyon, phantom, quintom, dilatonic dark energy, etc). We have defined an equivalence relation from elementary set theory between scalar field models of dark energies and used fundamental ideas from linear algebra to set up our model. Consequently, we have obtained mutually disjoint subsets of scalar field dark energies with similar properties and discussed our observation.  相似文献   

10.
A new strategy of exact solutions construction in inflationary cosmology within the self-interacting scalar field theory is proposed. It is shown that inflationary models have no restrictions dictated by the slow-roll approximation on the self-interacting potential. The suggested approach makes it possible to compute precisely the e-folds numbers in inflationary scenarios. The scalar field with a logarithmic evolution in time is analyzed in details. Other possible types of scalar field evolution are discussed.  相似文献   

11.
We study theories of gravitation that are based on the Einstein – Hilbert action that are not projectively invariant and can therefore completely determine their connections. We are thus lead to the conclusion that the geometry is necessarily Riemann – Cartan and at least the trace part of a torsion field must be present. We examine the consequence of including these torsion fields in cosmological models. Our results differ from those obtained earlier in the Einstein – Cartan – Sciama – Kibble theory. We also consider a model that includes a series of quadratic torsion terms. This series leads to a potential function that has the effect of “turning on” the cosmological constant. This potential function then acts like dark energy. This model also shows that the torsion field can produce an inflationary period. PACS: 04.02 Cv, 95.30 Sf, 98.80-k  相似文献   

12.
We consider a self consistent system of Bianchi type-I (BI) gravitational field and a binary mixture of perfect fluid and dark energy. The perfect fluid is taken to be the one obeying the usual equation of state, i.e., p = ξε, with ζ∉[0, 1] whereas, the dark energy is considered to be obeying a quintessence-like equation of state. The modification of the ordinary quintessence lies in the fact that its pressure becomes positive if the (dark) energy density exceeds some critical value. Exact solutions to the corresponding Einstein equations are obtained. The model in consideration gives rise to a Universe which is spatially finite. Depending on the choice of problem parameters the Universe is either close with a space-time singularity, or an open one which is oscillatory, regular and infinite in time. PACS numbers: 04.20.Ha, 03.65.Pm, 04.20.Jb  相似文献   

13.
14.
We consider the ground state energy of a massive scalar field in the space-time of a thick cosmic string in the 2+1 dimensional case for arbitrary angle deficit by using the zeta-function approach. Final numerical calculations were made in the massless case, only. We show that the zero point energy is negative, and for small angle deficit it is proportional to the fourth degree of the deficit.  相似文献   

15.
A scalar field generalization of Xanthopoulos's cylindrically symmetric solutions of the vacuum-Einstein equations is obtained. The obtained solution preserves the properties of the Xanthopoulos solution, which are regular on the axis, asymptotically flat, and free from the curvature singularities. The solution describes a stable, rotating cosmic string of infinite length interacting with gravitational and scalar waves.  相似文献   

16.
We consider a scalar field with a negative kinetic term minimally coupled to gravity. We obtain an exact non-static spherically symmetric solution which describes a wormhole in a cosmological setting. The wormhole is shown to connect two homogeneous spatially flat universes expanding with acceleration. Depending on the wormhole's mass parameter m the acceleration can be constant (the de Sitter case) or infinitely growing.  相似文献   

17.
    
We assume generalized ghost Pilgrim dark energy (GGPDE) model in the presence of cold dark matter in flat FRW universe. With suitable choice of interaction term between GGPDE and cold dark matter, we investigate the nature of equation of state parameter for GGPDE. Also, we investigate the natures of dynamical scalar field models (such as quintessence, tachyon, k-essence, and dilaton dark energy) and concerned potentials through the correspondence phenomenon between GGPDE and these models.  相似文献   

18.
We present a class of scalar field cosmologies with a dynamically evolving Newton parameter G and cosmological term . In particular, we discuss a class of solutions which are consistent with a renormalization group scaling for G and near a fixed point. Moreover, we propose a modified action for gravity which includes the effective running of G and near the fixed point. A proper understanding of the associated variational problem is obtained upon considering the four-dimensional gradient of the Newton parameter.  相似文献   

19.
The universe content is considered as a non-perfect fluid with bulk viscosity and can be described by a general equation of state (endowed some deviation from the conventionally assumed cosmic perfect fluid model). An explicitly bulk viscosity dark energy model is proposed to confront consistently with the current observationaldata sets by statistical analysis and is shown consistent with (not deviated away much from) the concordant Λ Cold Dark Matter (CDM) model by comparing the decelerating parameter. Also we compare our relatively simple viscosity dark energy model with a more complicated one by contrast with the concordant ΛCDM modeland find our model improves for the viscosity dark energy model building. Finally we discuss the perspectives of dark energy probes for the coming years with observations.  相似文献   

20.
We investigate the dynamics of a scalar field in the framework of the scalar-tensor theory. A nontrivial behavior of the field in the vicinity of singular points of the kinetic term is observed. In particular, the singular points could serve as attractor for classical solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号