首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
氧析出反应(OER)是裂解水、二氧化碳还原、以及可充电的锌空电池等许多技术中重要的半反应,但受限于其迟缓的反应动力学,开发高效的氧析出催化剂迫在眉睫.在OER出反应中,性能较好的非贵金属催化剂主要是第四周期过渡金属的一些化合物,如氧化物、氢氧化物、硫化物、硒化物、磷化物等等.在这些材料中,镍铁双金属化合物被认为是最优的氧析出材料,尤其是镍铁层状双氢氧化物(Ni Fe-LDHs)它拥有较大的电化学活性面积以暴露较多活性位点,同时镍铁两种过渡金属元素存在协同效应,使得其具有良好的催化性能.然而,这一类材料的OER性能仍然有优化的空间.研究表明,将硫化物氧化得到的氢氧化物会有少量的硫元素残留,这种硫残留的氢氧化物拥有十分优异的OER性能.为了进一步认识硫的引入对Ni Fe-LDHs的OER行为的影响,本文通过水热法合成了硫掺杂的Ni Fe-LDHs,考察了硫的掺杂量对催化剂性能的影响,验证了微量硫的存在对Ni Fe-LDHs的OER性能的贡献.扫描电镜图片显示,水热合成的催化剂是厚度为几十纳米的薄片,拥有较高的比表面积, X射线荧光光谱分析证明合成的硫掺杂Ni Fe-LDHs中镍铁的元素比例为4:1,而且硫的掺杂量并不影响催化剂的形貌和其中镍铁元素比.X射线光电子能谱分析表明,硫原子的引入使得铁原子结合能降低,即硫与铁的相互作用部分降低了铁的价态,这种硫和铁的相互作用能够优化OER反应中间体OH*与O*在铁活性位点上的吸附自由能,降低氧析出反应的过电势.电化学测试表明,拥有0.43%的硫掺杂Ni Fe-LDHs拥有最好的氧析出性能, 10 m A cm^-1下超电势仅有257 m V, Tafel斜率61.5 m V dec^-1.此后,随着硫掺杂量的提升,其性能先保持稳定,随后有所下降.在稳定测试中,硫掺杂的镍铁层状双氢氧化物在10 m Acm-1电流密度下循环30 h后过电位仅衰减14 m V.在对稳定性测试后的催化剂进行表征表明,催化剂发生了轻微了变形,但这对性能的影响不大.综上,本文提供了一种简便的通过非金属元素掺杂调控过渡金属氧化物的结构和电子态的方法,有望为设计高活性OER电催化剂提供新思路.  相似文献   

2.
氧析出反应(OER)是裂解水、二氧化碳还原、以及可充电的锌空电池等许多技术中重要的半反应,但受限于其迟缓的反应动力学,开发高效的氧析出催化剂迫在眉睫.在OER出反应中,性能较好的非贵金属催化剂主要是第四周期过渡金属的一些化合物,如氧化物、氢氧化物、硫化物、硒化物、磷化物等等.在这些材料中,镍铁双金属化合物被认为是最优的氧析出材料,尤其是镍铁层状双氢氧化物(Ni Fe-LDHs)它拥有较大的电化学活性面积以暴露较多活性位点,同时镍铁两种过渡金属元素存在协同效应,使得其具有良好的催化性能.然而,这一类材料的OER性能仍然有优化的空间.研究表明,将硫化物氧化得到的氢氧化物会有少量的硫元素残留,这种硫残留的氢氧化物拥有十分优异的OER性能.为了进一步认识硫的引入对Ni Fe-LDHs的OER行为的影响,本文通过水热法合成了硫掺杂的Ni Fe-LDHs,考察了硫的掺杂量对催化剂性能的影响,验证了微量硫的存在对Ni Fe-LDHs的OER性能的贡献.扫描电镜图片显示,水热合成的催化剂是厚度为几十纳米的薄片,拥有较高的比表面积, X射线荧光光谱分析证明合成的硫掺杂Ni Fe-LDHs中镍铁的元素比例...  相似文献   

3.
经一步水热法在泡沫镍(NF)上原位生长获得了AlCo-LDH/NF (LDH=层状双氢氧化物)催化剂。基于AlCo-LDH的高表面积和良好相界面,催化剂表现出了优异的电催化析氧反应(OER)活性。在碱性介质中,当电流密度为200 mA·cm-2时,AlCo3-LDH/NF催化剂具有419 mV的低过电位和50.04 mV·dec-1的低Tafel斜率。  相似文献   

4.
电催化水裂解被广泛认为是一种非常有前景的制氢路线之一,这一反应过程包括析氢反应和析氧反应.与析氢反应相比,析氧反应涉及多步质子耦合–电子转移过程,需要较大的活化能垒和过电势,因此是水裂解反应的瓶颈. Ni–Fe层状双氢氧化物因其独特的层状结构和优异的析氧反应性能而备受关注.本文首先介绍了电催化析氧反应的机理以及评价电催化剂性能的关键参数和标准,讨论了Ni–Fe层状双氢氧化物催化剂的制备方法,随后重点综述了析氧反应性能优化策略,如构筑纳米结构、掺杂异原子、构建异质结构、负载单原子、调控缺陷位、扩大层间距等方法.最后,对Ni–Fe LDH催化剂未来发展提出了展望和挑战.  相似文献   

5.
6.
7.
利用可再生电力驱动水分解提供了一种绿色和可持续的方式来生产氢气(H2),而提高水分解效率的关键是开发高效的电催化剂.作为水分解反应的阴极,析氢反应(HER)仅需要两电子转移,目前的研究较为成熟.相比之下,析氧反应(OER)因涉及四个电子的转移,比HER过程更复杂.在众多析氧催化剂中,镍铁(NiFe)基电催化剂是碱性电解液体系中最佳的OER催化剂之一,然而其在中性及近中性体系中活性降低较多,从而限制了其在中性的海水电解及二氧化碳还原体系中的应用.目前,造成NiFe基催化剂在中性体系中性能较差的具体机制尚不清晰.文献报道,随着体系pH逐渐降低,NiFe基催化剂析氧性能也会随之变差;深入研究发现,碱性体系中更易于形成高价的Ni,Fe物质,但其是否对催化剂在水分解过程中有影响仍有待进一步研究.本文将电化学测试与原位光谱技术相结合,对镍铁层状双金属氢氧化物(NiFe LDH)在不同pH电解液体系中的析氧反应机理进行深入研究.电化学测试结果表明,随着pH值逐渐降低,NiFe LDH催化剂的析氧性能逐渐变差.原位表面增强拉曼光谱结果表明,不同pH电解液体系中NiOOH和“活性氧...  相似文献   

8.
王思  马嘉苓  陈利芳  张欣 《化学学报》2021,79(2):216-222
双金属氢氧化物(LDH)是催化析氧反应(OER)活性最佳的一类催化剂,其中揭示双金属位点的协同作用是进一步提升其电催化、光催化性能的关键.本工作采用密度泛函方法,从理论计算角度探究了五种M32+N3+-LDH(M2+=Co2+、Ni2+,N3+=Al3+、Cr3+、Mn3+、Fe3+)在催化OER中的反应机制和双金属位...  相似文献   

9.
隋铭皓  段标标  盛力  黄书杭  佘磊 《催化学报》2012,33(8):1284-1289
采用共沉淀法制备了Co-Mn-Al层状双氢氧化物,并将其用于以硝基苯为目标污染物的催化臭氧降解反应中.结果表明,Co-Mn-Al层状双氢氧化物存在时,硝基苯的降解和矿化效率较单独臭氧氧化系统显著提高.采用加入羟基自由基捕获剂(叔丁醇)和电子顺磁共振检测(5,5-二甲基-1-吡咯啉-N-氧化物为捕获剂)的间接、直接方法,...  相似文献   

10.
采用共沉淀法, 固定Mg2+/(Al3++Ti4+)摩尔比为3.00, 改变Ti4+/(Al3++Ti4+)摩尔比(RTi, 0~0.40), 合成了5个Mg-Al-Ti-CO3层状双氢氧化物(LDHs)样品, 并进行了表征. 采用电势滴定、 盐滴定和电势质量滴定法, 测定了其结构电荷密度(σst)、 零净电荷点(pHPZNC)和零净质子电荷点(pHPZNPC)等, 并基于普适1-pK和2-pK模型得出其表面羟基酸碱反应特征平衡常数(pK, pKa1int和pKa2int), 考察了RTi对LDHs晶体结构和界面电化学性质的影响. 研究结果表明, 随着RTi增大,晶胞常数和层间距均增大, 可归因于Ti4+离子间强静电排斥作用. pHPZNC和pHPZNPC以及pK, pKa1int和pKa2int均随RTi的增大而有增大的趋势, 表明表面羟基去质子化趋势降低. 各LDHs样品的pHPZNPC值低于其pHPZNC值, 且随电解质(NaNO3)浓度的增大而升高, 可归因于结构正电荷效应.  相似文献   

11.
开发高性能、 低成本的氧析出反应(OER)电催化剂是促进质子交换膜水电解(PEMWE)制氢规模化应用的关键。迄今为止, OER催化剂的最佳选项仍为贵金属铱(Ir), 但其仍存在活性不足和储量稀缺的问题, 进而增加了材料成本和电力成本。因此, 开发低Ir载量、 高活性和稳定性间距, 且能够满足PEMWE设备中大电流密度和长期运行要求的OER催化剂是十分必要的。这些目标的实现需要深入理解酸性OER机制、明晰材料设计方法, 并建立可靠的性能评估指标(特别是对耐久性的评估)。综上,本文首先系统总结了目前被广泛接受的酸性OER活性表达机制(即吸附析出机制、 晶格氧氧化机制和多活性中心机制)和失活机制(即活性物种溶解、晶相和形态演化、 催化剂脱落和活性位点阻塞), 为催化剂的微观结构设计提供指导。其次, 我们讨论了最近报道的几类低铱OER催化剂, 包括多金属合金氧化物、 负载型催化剂、具有特殊空间结构的催化剂和单位点催化剂, 并重点描述低Ir催化剂中的性能如何得以调控以及其中潜在的构效关系。随后, 我们介绍了常用的催化剂稳定性评价指标、 催化剂失活表征技术以及模拟PEMWE实际操作条件的催化剂寿命测试方法,希望为催化剂筛选提供依据。最后, 针对未来可用于PEMWE体系的低铱OER催化剂的探索提出了一些可行建议。  相似文献   

12.
通过低饱和共沉淀法合成了类水滑石结构的层状氢氧化物(Layered Double Hydroxide,LDH)前驱体,经煅烧获得衍生Cu/Al/Zn、Cu/Al/Ni、Cu/Al/Ni/Zn高分散复合氧载体。采用XRD、XRF、H2-TPR、SEM及BET等分析手段对氧载体的结构及反应性能进行了表征,并通过固定床反应器开展了氧载体与生物质化学链气化实验。结果表明,合成的三种前驱体都具有典型的水滑石特征衍射峰,且层板稳定。Cu/Al/Zn前驱体层间厚度为0.264 2 nm,Ni2+引入后,层间距减小。前驱体煅烧后形成的复合氧载体中元素含量与制备试剂基本一致。氧载体中Zn、Ni元素的引入可提升Cu O的反应活性,降低H2还原的反应温度,Zn元素与Cu具有更好的协同作用。Cu/Al/Ni/Zn氧载体在固定床化学链气化中具有较好的碳转化率和气体产率,其碳转化率为82.03%。反应后氧载体比表面积为5.995 m2/g,具有较好的可再生性与抗烧结性,是生物质化学链气化反应较为理想的氧载体。  相似文献   

13.
采用离子交换法实现了谷氨酸(Glu)插层到ZnAl层状双氢氧化物(ZnAl-LDH)中而形成Glu/ZnAl-LDH纳米复合材料,并用X射线衍射(XRD)、傅里叶变换红外(FT-IR)光谱、透射电子显微镜(TEM)以及热失重-差热(TG-DTA)分析等测试技术,研究了交换时间对Glu/ZnAl-LDH纳米复合材料结构的影响。发现当交换时间为1d时,Glu/ZnAl-LDH纳米复合材料粒子的结晶度好,Glu分子均以垂直形式插入,此时Glu在层间达到交换平衡。当交换时间为2d时,部分Glu开始以水平方式插入ZnAl-LDH纳米材料层间。但当交换时间进一步延长时,ZnAl-LDH纳米材料的结构发生部分坍塌,而且ZnAl-LDH纳米材料在微酸性的Glu溶液中发生部分溶解而使其六边形的结构出现破损。由于Glu插入ZnAl-LDH纳米复合材料层间后,其稳定性得到提高,因此,ZnAl-LDH纳米材料可以作为优良的生物分子的载体和储存器。  相似文献   

14.
采用简便的一步水热合成法,在泡沫镍上原位生长微量W~(6+)掺入的Fe_(0.2)Ni(OH)_2双金属层状氢氧化物(LDH),以此来降低铁镍材料的过电势。通过场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和拉曼光谱(Raman)等分析方法对材料形貌、组成、结构等进行表征,发现钨掺杂使催化剂材料的晶体结构和电子结构发生变化,W_(0.03)Fe_(0.2)Ni(OH)_2LDH表现出优异的电化学析氧(OER)和析氢(HER)性能。电化学测试表明该催化剂在25 mA·cm~(-2)电流密度下OER和HER过电势分别仅有271和208 mV,塔菲尔斜率分别为61和181 mV·dec~(-1)。此外,经过长达20 h计时电位稳定性测试后,材料的催化性能未见明显下降。  相似文献   

15.
采用乙二醇溶剂热法合成了一系列基于层状双氢氧化物前驱体(LDHs)的NiAlNd催化剂。Nd的引入大大提高了CO2甲烷化的低温催化活性。在 T=210 ℃,WHSV(weight hourly space velocity)=24 000 mL·g-1·h-1,p=100 kPa的条件下,NiAlNd-0.4催化剂上CO2转化率达到83.9%。Nd3+取代部分Al3+阻碍了前驱体中LDHs结构的形成,同时也减小了焙烧后催化剂的粒径。Nd的加入削弱了NiO与Al2O3之间的相互作用,促进了NiO的还原,提高了Ni的本征活性。此外,Nd的添加提高了催化剂表面碱性位的数目,从而增强了对CO2的吸附。随着Nd掺杂量的增加,还原后的催化剂中金属Ni的表面积呈火山形变化。Ni活性位的数目和本征活性同时影响NiAlNd催化剂的催化活性。  相似文献   

16.
采用乙二醇溶剂热法合成了一系列基于层状双氢氧化物前驱体(LDHs)的NiAlNd催化剂。Nd的引入大大提高了CO2甲烷化的低温催化活性。在 T=210 ℃,WHSV(weight hourly space velocity)=24 000 mL·g-1·h-1,p=100 kPa的条件下,NiAlNd-0.4催化剂上CO2转化率达到83.9%。Nd3+取代部分Al3+阻碍了前驱体中LDHs结构的形成,同时也减小了焙烧后催化剂的粒径。Nd的加入削弱了NiO与Al2O3之间的相互作用,促进了NiO的还原,提高了Ni的本征活性。此外,Nd的添加提高了催化剂表面碱性位的数目,从而增强了对CO2的吸附。随着Nd掺杂量的增加,还原后的催化剂中金属Ni的表面积呈火山形变化。Ni活性位的数目和本征活性同时影响NiAlNd催化剂的催化活性。  相似文献   

17.
采用界面工程策略在泡沫镍(NF)上制备了CuCo2O4/NiFe层状双金属氢氧化物(LDH)(CuCo2O4/NiFe-LDH@NF)核壳纳米花球阵列。研究表明,电子通过CuCo2O4和NiFe-LDH耦合界面发生转移,导致核心CuCo2O4处于富电子状态,从而提高了反应速率。非晶态NiFe-LDH外壳不仅为电子/物质提供更多的传输通道和增加活性位点。同时,还能在电催化析氧反应(OER)中保护核心CuCo2O4免受强碱腐蚀。因此,在1.0 mol·L-1 KOH溶液中,将CuCo2O4/NiFe-LDH@NF用作OER催化剂时,仅需191mV的低过电位即可实现10 mA·cm-2的电流密度和31 mV·dec-1的低Tafel斜率。此外,CuCo2O4/NiFe-LDH@NF在长时间的工作中能够保证催化性能、晶体结构、形貌结构和组成的稳定。  相似文献   

18.
采用界面工程策略在泡沫镍(NF)上制备了 CuCo2O4/NiFe 层状双金属氢氧化物(LDH) (CuCo2O4/NiFe-LDH@NF)核壳纳米花球阵列。研究表明,电子通过CuCo2O4和NiFe-LDH耦合界面发生转移,导致核心CuCo2O4处于富电子状态,从而提高了反应速率。非晶态NiFe-LDH外壳不仅为电子/物质提供更多的传输通道和增加活性位点。同时,还能在电催化析氧反应(OER)中保护核心 CuCo2O4免受强碱腐蚀。因此,在 1.0 mol·L-1 KOH 溶液中,将 CuCo2O4/NiFe-LDH@NF 用作 OER 催化剂时,仅需 191mV 的低过电位即可实现 10 mA·cm-2的电流密度和 31 mV·dec-1的低 Tafel斜率。此外,CuCo2O4/NiFe-LDH@NF 在长时间的工作中能够保证催化性能、晶体结构、形貌结构和组成的稳定。  相似文献   

19.
碳酸二甲酯(DMC)是一种环境友好型绿色化学品,可作为甲基化和羰基化试剂用于取代传统剧毒的硫酸二甲酯和光气.另外,DMC具有良好的溶解性能,可用于高级溶剂;DMC分子中具有高的氧含量,可用作汽油添加剂来提高汽油的辛烷值;DMC还可用作聚碳酸酯的原料.随着人们环保意识的不断增强,DMC的生产和应用呈现出巨大的吸引力和市场潜力.DMC合成方法主要有光气法、甲醇氧化羰化法、尿素醇解法及酯交换法等.酯交换法具有反应条件温和、产率高等优点,是目前工业制备DMC的主要方法.研究发现,相对于酸性催化剂,碱性催化剂更有利于酯交换法合成DMC.金属氧化物催化剂具有活性高、热稳定性高及可连续重复回收利用等优点,因而引起了广泛关注.CaO对于酯交换合成DMC反应具有良好的催化活性,但其稳定性差.因此,通常采用复合金属氧化物来促进CaO的分散,并增加金属间相互作用以防止CaO流失.研究发现,经煅烧后的Mg-Al,Ca-Al和Ca-Mg-Al催化剂对于酯交换反应具有高的活性和稳定性.此外,通过碱性稀土金属(La,Ce和Y)的引入可以修饰催化剂上的碱性位点,从而调变催化剂的碱性.本文合成了一系列以Ca-M-Al(M=Mg,La,Ce,Y)层状双氢氧化物为前驱体的固体碱催化剂,将其用于甲醇与碳酸丙烯酯酯交换合成DMC.通过X射线衍射、热重分析、红外光谱、X射线光电子能谱、电感耦合等离子体、CO2程序升温脱附和Hammett指示剂对催化剂进行了表征.研究发现,各催化剂的活性高低依次为:Ca-Y-Al相似文献   

20.
在清洁和可再生能源的转化过程中, 氧还原反应和氧析出反应需要高效的电催化剂以克服其动力学限制. 本文设计了一系列掺杂杂原子的无金属石墨二炔, 以促进上述两类关键化学反应.为了评估电催化性能, 利用密度泛函理论研究了反应路径和吉布斯自由能变化. 计算结果表明, 掺杂剂可以优化中间体的吸附, 降低反应的过电位. 本文还得到了将催化剂性质与催化剂结构相关联的内在描述符, 该描述符可以加速开发和筛选新型电催化剂. 研究结果可为清洁能源技术(如燃料电池、 金属空气电池和电解水等)中碳基催化剂的设计提供指导.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号