首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The removal of cationic dyes, methylene blue(MB) and rhodamine B(RB), and anionic dyes, methyl or-ange(MO) and eosin Y(EY), from aqueous solutions by adsorption using Cu2Se nanoparticles(Cu2SeNPs) was studied. The effects of the initial pH values, adsorbent doses, contact time, initial dye concentrations, salt concentrations, and operation temperatures on the adsorption capacities were investigated. The adsorption process was better fitted the Langmuir equation and pseudo-second-order kinetic model, and was spontaneous and endothermic as well. The adsorption mechanism was probably based on the electrostatic interactions and π-π interactions between Cu2SeNPs and dyes. For an adsorbent of 0.4 g/L of Cu2SeNPs, the adsorption capacities of 23.1(MB), 22.9(RB) and 23.9(EY) mg/g were achieved, respectively, with an initial dye concentration of 10 mg/g(pH=8 for MB and pH=4 for RB and EY) and a contact time of 120 min. The removal rate of MB was still 70.4% for Cu2SeNPs being reused in the 5th cycle. Furthermore, the recycled Cu2SeNPs produced from selenium nanoparticles adsorbing copper were also an effective adsorbent for the removal of dyes. Cu2SeNPs showed great potential as a new adsorbent for dyes removal due to its good stability, functionalization and reusability.  相似文献   

2.
《中国化学会会志》2018,65(8):940-950
Magnetic carboxyl‐coated silica iron oxide nanoparticles (Fe3O4@SiO2‐COOH NPs) were successfully synthesized, characterized, and then applied as a nano‐adsorbent for removal of malachite green (MG) from aqueous solutions. According to the experimental results, about 97.5% of MG could be removed from aqueous solutions using an adsorbent amount of 0.5 g/L at pH = 9 in 120 min. The kinetics and equilibrium adsorptions is well‐described by the pseudo‐second‐order kinetics and Langmuir model with the maximum absorption capacity of 263.16 mg/g, respectively. Thermodynamic studies showed that the adsorption of the hazardous MG dye was spontaneous and endothermic with a random process.  相似文献   

3.
研究了阴离子交换树脂对水相中有机磷酸萃取剂的吸附。 通过比较不同的离子交换树脂对水相中2-乙基己基膦酸-单-2-乙基己基酯(P507)的去除率,发现大孔强碱性阴离子交换树脂(D201-OH)从水溶液中去除P507的能力最强,去除率可达99.24%。 而且当溶液在pH=1.0时,D201-OH对P507的吸附主要是分子吸附,其吸附等温线更适用于Langmuir模型;当溶液在pH=5.0时,阴离子交换反应占主导地位,其吸附等温线更适用于Freundlich模型。 研究还表明,D201-OH对P507的吸附在20 min内即达到吸附平衡时99.8%的吸附量。 通过动力学研究表明,拟一级动力学模型(R2>0.99)更适用于描述实验数据,并且吸附速率主要受膜扩散控制。 此外,吸附-解吸附循环8次后,D201-OH的吸附能力仍然保持在93%以上。 综上所述,D201-OH是有机磷酸类萃取剂的良好吸附剂,其吸附性能高效,循环过程稳定,因此可用于实际生产过程中回收有机磷酸萃取剂。  相似文献   

4.
The removal of cadmium(Cd) from synthetic solutions by batch adsorption process was performed using eggshell powder, which is mainly composed of calcite(CaCO3). In order to optimize the adsorption process, a response surface methodology(RSM) based on Central Composite Design(CCD) was applied. Developed model for Cd remo-val yields(R,%) response was statistically validated by variance analysis(ANOVA) which showed a high determination coefficient value(R2=0.9889). According to Minitab software, the optimal conditions were found at temperature of 44℃, eggshell adsorbent dose of 2.98 g, initial Cd concentration of 36.74 mg/L and initial pH of 7. Under these conditions, the Cd removal yield was 98.76%. The deviation value of 1.24% confirms the validity of the model for the adsorption process optimization. The adsorption isotherm has been described by a Freundlich model. In addition, the predominant sorption mechanisms are the chemisorptions or precipitation(non-reversible) and ion exchange(reversible).  相似文献   

5.
Quartzite obtained from local source was investigated for the removal of anionic dye congo red (CR) and cationic dye malachite green (MG) as an adsorbent from aqueous solution in batch experiment. The adsorption process was studied as a function of dye concentration, contact time, pH and temperature. Adsorption process was described well by Langmuir and Freundlich isotherms. The adsorption capacity remained 666.7 mg/g for CR dye and 348.125 mg/g for MG dye. Data was analyzed thermodynamically, ΔH0 and ΔG0 values proved that adsorption of CR and MG is an endothermic and spontaneous process. Adsorption data fitted best in the pseudo-first order kinetic model. The adsorption data proved that quartzite exhibits the best adsorption capacity and can be utilized for the removal of anionic and cationic dyes.  相似文献   

6.
Polyurethane foam was chemically functionalized with salicylate through the –N?N– group generating a stable chelating sorbent PUFSalicylate (PUFS) for being used as a low cost, available, and renewable adsorbent for the removal of Malachite Green (MG) textile dye from aqueous solutions. Batch experiments were carried out for sorption kinetics and isotherms. The synthesized adsorbent was characterized by Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microcopy (SEM), and X-ray diffraction. The present study is related to the removal of colorants. Adsorption of MG dye on PUFS was studied as a function of different experimental parameters such as temperature, contact time, amount of adsorbent, and pH. A spectrophotometer technique was used for measuring the extent of adsorption. The data were fitted with Langmuir and Freundlich isotherm equations and their corresponding constants were calculated from the slopes and intercepts of their respective lines. From the measured adsorption isotherms at different temperatures 298, 308, and 318 K, it was found that adsorption increases as the temperature increases within this range. The measured adsorption amount of MG dye increases with increased pH.  相似文献   

7.
任一丹  王爱丽 《应用化学》2015,32(7):825-830
开发了高效去除重金属Cr(Ⅵ)污染的生物吸附剂,菹草(Potamogeton crispus)干粉吸附剂,通过单因素分析考察了吸附时间、吸附剂颗粒大小、溶液初始pH值、吸附剂用量、Cr(Ⅵ)初始浓度以及离子强度等对重金属离子Cr(Ⅵ)的吸附性能。 结果表明,对吸附效果影响显著的因素有Cr(Ⅵ)初始浓度、吸附剂颗粒大小、溶液初始pH值和离子强度;其吸附行为符合准二级动力学方程,相关系数为0.9998;菹草对Cr(Ⅵ)的吸附等温线符合Langmuir方程。  相似文献   

8.
In recent times, polyaniline (PANI), a conducting polymer, has been studied widely for environmental remediation application due to its controllable electric conductivity with high surface area, which makes it a suitable adsorbent material. But lower mechanical stability of PANI is considered to be a serious drawback for its large-scale industrial application. To improve the mechanical strength of PANI, in this study, hematite nanoparticles were impregnated onto PANI by oxidative polymerization method in order to fabricate a novel organometallic nanocomposite (hematite-PANI-NC). The hematite-PANI-NC was used as adsorbent for removal of methyl orange (MO) and eosin yellow (EY) dye from binary dye matrix under ultrasonic-assisted adsorption. Excellent MO and EY dye removal (more than 98%) was observed from binary matrix at a wide solution pH from 2.0 to 6.0, and under ultrasound wave the adsorption equilibrium was achieved within 15 min only. Both MO and EY dyes adsorption experimental data strictly followed Langmuir isotherm, and maximum monolayer adsorption capacity of 126.58 mg/g and 112.36 mg/g was observed for MO and EY dye, respectively. The uptake mechanism of MO and EY dyes onto hematite-PANI-NC is governed by electrostatic interaction, π-π bonding and hydrogen bonding between dye molecules and nanocomposite. Response surface methodology analysis reveals maximum MO and EY removal of 98.43% and 99.35% at optimum experimental conditions. This study implies that the hybrid organometallic material hematite-PANI-NC has high potential for quick and enhanced sono-assisted uptake of anionic dyes from water near neutral solution pH.  相似文献   

9.
Reactive Green HE 4BD was immobilized on polyamide (PA) hollow fibers for human serum albumin (HSA) adsorption from both aqueous solutions and human plasma. Different amounts of Reactive Green HE 4BD were incorporated on the PA hollow fibers by changing the dye attachment conditions, i.e. the initial dye concentration and the addition of sodium carbonate and sodium chloride. The maximum amount of dye attachment was obtained as 39.4 micromol x g(-1) when the hollow fibers were treated with 3 M HCl for 30 min before performing the dye attachment. HSA adsorption onto unmodified and dye-attached hollow fibers was investigated batchwise. The non-specific adsorption of HSA was low (6.0 mg/g hollow fiber). Dye attachment onto the hollow fibers significantly increased the HSA adsorption (86.7 mg/g). The maximum HSA adsorption was observed at pH 5.0. Higher HSA adsorption was observed from human plasma (198 mg HSA/g). The desorptions were performed by adding 0.1 M Tris/HCl buffer containing 0.5 M NaSCN or 1.0 M NaCl to the HSA solutions in which adsorption equilibria had been reached. The desorption results demonstrated that the adsorption of HSA to the adsorbent was reversible. Chemical structure of Reactive Green HE-4BD.  相似文献   

10.
Waste material (carbon slurry), from fuel oil-based generators, was used as adsorbent for the removal of two reactive dyes from synthetic textile wastewater. The study describes the results of batch experiments on removal of Vertigo Blue 49 and Orange DNA13 from synthetic textile wastewater onto activated carbon slurry. The utility of waste material in adsorbing reactive dyes from aqueous solutions has been studied as a function of contact time, temperature, pH, and initial dye concentrations by batch experiments. pH 7.0 was found suitable for maximum removal of Vertigo Blue 49 and Orange DNA13. Dye adsorption capacities of carbon slurry for the Vertigo Blue 49 and the Orange DNA13 were 11.57 and 4.54 mg g(-1) adsorbent, respectively. The adsorption isotherms for both dyes were better described by the Langmuir isotherm. Thermodynamic treatment of adsorption data showed an exothermic nature of adsorption with both dyes. The dye uptake process was found to follow second-order kinetics.  相似文献   

11.
Kitchen waste hydrolysis residue (KWHR), which is produced in the bioproduction process from kitchen waste (KW), is usually wasted with potential threats to the environment. Herein, experiments were carried out to evaluate the potential of KWHR as adsorbent for dye (methylene blue, MB) removal from aqueous solution. The adsorbent was characterized using FT-IR and SEM. Adsorption results showed that the operating variables had great effects on the removal efficiency of MB. Kinetic study indicated pseudo-second-order model was suitable to describe the adsorption process. Afterwards, the equilibrium data were well fitted by using Langmuir isotherm model, suggesting a monolayer adsorption. The Langmuir monolayer adsorption capacity was calculated to be 110.13 mg/g, a level comparable to some other low-cost adsorbents. It was found that the adsorption process of MB onto KWHR was spontaneous and exothermic through the estimation of thermodynamic parameters. Thus, KWHR was of great potential to be an alternative adsorbent material to improve the utilization efficiency of bioresource (KW) and lower the cost of adsorbent for color treatment.  相似文献   

12.
The effectiveness of Congo red (CR) adsorption from aqueous solutions onto MgAl-layered double hydroxide (MgAl-LDH) nanosorbents was examined in this study. MgAl-LDH was synthesized using the hydrothermal method, and physicochemical characterization was performed via powdered X-ray diffraction, high-resolution transmission electron microscopy, Fourier transform infrared analysis, and zeta potential measurements. For optimum adsorption of CR onto the synthesized MgAl-LDH nanosorbent, the adsorption process was employed in batch experiments. Adsorption parameters, such as the adsorbent dosage, solution pH, contact time, and initial adsorbate concentration, vary with the adsorption kinetics and isotherm mechanism. The results of the batch experiments indicated rapid adsorption of CR dye from aqueous solutions onto MgAl-LDH during the first 30 min until equilibrium was achieved at 180 min with a dye concentration of 50 mg/100 mL and MgAl-LDH adsorbent dosage of 0.05 g. The experimental adsorption data fit adequately with the monolayer coverage under the Langmuir isotherm model (R2 = 0.9792), and showed the best fit with the pseudo-second-order kinetic model (R2 = 0.996). The change in zeta potential confirmed the effective adsorption interaction between the positively charged MgAl-LDH and the negatively charged CR molecules with electrostatic interactions. This work is distinguished by the successful hydrothermal preparation of MgAl-LDH in the form of homogenous nanoscale particles (~100 nm). The prepared MgAl-LDH showed a high adsorption capacity toward anionic CR dye with a maximum adsorption capacity of 769.23 mg/g. This capacity is higher than those reported for other adsorbents in previous research.  相似文献   

13.
Batch adsorption experiments were carried out for the removal of malachite green (MG) cationic dye from aqueous solution using novel hydrogel nanocomposite that was prepared by graft copolymerization of acrylic acid (AA) onto kappa-carrageenan (κC) biopolymer in the presence of a crosslinking agent, a free radical initiator and aminosilica-functionalized TiO2 nanoparticles (κC-g-PAA/TiO2–NH2). The factors influencing adsorption capacity of the adsorbents such as initial pH value (pH0) of the dye solutions, TiO2–NH2 content (wt%), initial concentration of the dye, amount of adsorbents, and temperature were investigated. The adsorption capacity of hydrogel nanocomposite for MG was compared with hydrogel. The adsorption behaviors of both adsorbents showed that the adsorption kinetics and isotherms were in good agreement with a pseudo-second-order equation and the Langmuir equation. The high adsorption capacity (q m= 666–833 (mg/g)) and the favorable heterogeneity factor (n = 1.2–1.5) calculated from isotherm equations show the efficiency of the novel adsorbents.  相似文献   

14.
The adsorption of a cationic dye, Basic Blue 16 (BB16), by montmorillonitic clay was studied in detail. Changes in the molecular structure during adsorption were analyzed by FTIR spectroscopy. BB16 adsorption onto the clay mainly results from hydrogen bonding between OH and NH2 groups of dye molecules and OH groups of clay and electrostatic interaction between the negatively charged clay surface and cationic dye. The montmorillonitic clay dose had an inverse effect on the adsorption performance, while the highest dye removal was 305 mg/g at pH 3.6. An increase in temperature and dye concentration positively enhanced the adsorption capacity of the montmorillonitic clay. Temperature had no effect on the adsorption at a dye concentration less than 500 mg/L, while dye adsorption was positively enhanced at elevated dye concentrations. Three-parameter equations provided higher better fitting than two-parameter equations while the Freundlich model had the highest correlation coefficient and the lowest error values with experimental data. The BB16 adsorption was well followed by pseudo-second order model and the rate of adsorption process was controlled by surface and intraparticle diffusion. Thermodynamic evaluations revealed that the adsorption process was spontaneous and endothermic, while the randomness increased during adsorption. Experimental results indicate that montmorillonitic clay from Eskisehir is a promising adsorbent for the removal of cationic dye molecules from aqueous solutions.  相似文献   

15.
Hydrogel is used as an adsorbent for the removal of dyes and heavy metals in waste water. In this work, different methods of synthesising novel hydrogels from liquid natural rubber (LNR) were investigated. The two different methods were ultrasonic-assisted polymerisation and heating under reflux. Through graft modification, LNR had initially combined with maleic anhydride (MaH) using benzoyl peroxide (BPO) as a radical initiator. After grafting, acrylic acid (AA) was crosslinked onto LNR-g-MaH using N,N-methylenebisacrylamide (MBA) and potassium persulfate (KPS) as a crosslinker and initiator, respectively. The best method between the two different techniques was identified via a five-level-two-factor response surface methodology (RSM). Higher adsorption percentage (93.34%) was observed in the ultrasonic technique. Meanwhile, the effects of adsorbent mass, dye concentration, pH solution and ionic strength were also investigated and results showed that different conditions were found to give different MG dye adsorption rates. The adsorption of MG dyes on hydrogel is dependent on pH and ionic strength solution. This action indicates an ion exchange mechanism. From an isotherm study, it was found that the Freundlich isotherm best fitted the adsorption of MG dyes. Furthermore, the adsorption kinetic data followed the pseudo-second order kinetic model and the reusability of hydrogel was also investigated.  相似文献   

16.
圆环上的无规行走   总被引:1,自引:1,他引:0  
研究了半径为R的圆环上的无规行走问题,给出了n步末端向量的几率分布ω(θ,n)和均方末端距2>的数学表达式,发现当R2》nl2时,2≈nl2即还原为一维直线上无规行走的结果;而当r2《nl2时,2>≈π2r2/3.还计算了平均末端距<|r|>及k阶矩k>和半径R的关系,同时作了简单的物理讨论。  相似文献   

17.
18.
Salicylhydroxamic acid(SHA) was covalently bound onto crosslinked polystyrene spheres(CPSs) via the Friedel-Crafts alkylation reaction between chloromethylated CPSs and SHA in the presence of SnCl4 as the Lewis acid catalyst. The resulted SHA-CPSs possessed very strong chelating ability for heavy metal ions. In particular, the saturated adsorption amount of SHA-CPSs for Cu2+ ions could reach as high as 34.2 mg/g at 318 K. The chelating capability of SHA-CPSs towards heavy metal ions was pH and temperature dependent. SHA-CPSs also showed selective metal coordination with the chelating capacity decreasing in the order of Cu2+>Zn2+>>Pb2+. The adsorption isotherms conformed well to the Langmuir model, and the adsorption process was found to be entropy-driven and endothermic. Besides, SHA-CPSs possessed the excellent reusability.  相似文献   

19.
通过原位生长方法,将最常见的金属有机骨架(MOFs)——沸石咪唑酯骨架材料(ZIF‐8)固定到羧甲基化聚丙烯腈静电纺丝纳米纤维(PAN‐COOH NFs)表面,得到ZIF‐8/PAN‐COOH NFs。通过扫描电子显微镜(SEM)、能量色散光谱(EDS)、X射线粉末衍射(XRD)和傅里叶变换红外光谱(FTIR)对合成的ZIF‐8/PAN‐COOH NFs形貌和结构进行表征,并深入研究ZIF‐8/PAN‐COOHNFs从废水中去除孔雀石绿(MG)的性能。研究发现: ZIF‐8/PAN‐COOH NFs对MG的吸附符合拟二级动力学方程,吸附过程可采用Langmuir等温线模型拟合,其对MG的最大吸附容量可达3 604 mg·g-1。此外,ZIF‐8/PAN‐COOH NFs在染料吸附实验中表现出良好的分离功能和重复利用性。  相似文献   

20.
通过原位生长方法,将最常见的金属有机骨架(MOFs)——沸石咪唑酯骨架材料(ZIF-8)固定到羧甲基化聚丙烯腈静电纺丝纳米纤维(PAN-COOH NFs)表面,得到ZIF-8/PAN-COOH NFs。通过扫描电子显微镜(SEM)、能量色散光谱(EDS)、X射线粉末衍射(XRD)和傅里叶变换红外光谱(FTIR)对合成的ZIF-8/PAN-COOH NFs形貌和结构进行表征,并深入研究ZIF-8/PAN-COOHNFs从废水中去除孔雀石绿(MG)的性能。研究发现: ZIF-8/PAN-COOH NFs对MG的吸附符合拟二级动力学方程,吸附过程可采用Langmuir等温线模型拟合,其对MG的最大吸附容量可达3 604 mg·g-1。此外,ZIF-8/PAN-COOH NFs在染料吸附实验中表现出良好的分离功能和重复利用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号