首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The approximate analytical solutions of the Dirac equation under spin and pseudospin symmetries are examined using a suitable approximation scheme in the framework of parametric Nikiforov-Uvarov method. Because a tensor interaction in the Dirac equation removes the energy degeneracy in the spin and pseudospin doublets that leads to atomic stability, we study the Dirac equation with a Hellmann-like tensor potential newly proposed in this study.The newly proposed tensor potential removes the degeneracy from both the spin symmetry and pseudospin symmetry completely. The proposed tensor potential seems better than the Coulomb and Yukawa-like tensor potentials.  相似文献   

2.
The approximate analytical solutions of the Dirac equation under spin and pseudospin symmetries are examined using a suitable approximation scheme in the framework of parametric Nikiforov-Uvarov method. Because a tensor interaction in the Dirac equation removes the energy degeneracy in the spin and pseudospin doublets that leads to atomic stability, we study the Dirac equation with a Hellmann-like tensor potential newly proposed in this study. The newly proposed tensor potential removes the degeneracy from both the spin symmetry and pseudospin symmetry completely. The proposed tensor potential seems better than the Coulomb and Yukawa-like tensor potentials.  相似文献   

3.
In this paper, we consider the relativistic Dirac equation with Tietz and general Manning-Rosen potential. By using appropriate approximation, we obtained the approximate analytical solutions of the Dirac equation for the combined potential via the supersymmetric quantum mechanics (SUSYQM). Within the framework of spin and pseudospin symmetry limits, we obtained the relativistic energy eigenvalus and the corresponding components of the wave functions for Tietz and Manning-Rosen potential using the SUSYQM. We have also reported some numerical results and figures to show the effect of the tensor interactions.  相似文献   

4.
The Dirac equation is solved to obtain its approximate bound states for a spin-1/2 particle in the presence of trigonometric Pschl-Teller(tPT) potential including a Coulomb-like tensor interaction with arbitrary spin-orbit quantum number κ using an approximation scheme to substitute the centrifugal terms κ(κ± 1)r-2.In view of spin and pseudo-spin(p-spin) symmetries,the relativistic energy eigenvalues and the corresponding two-component wave functions of a particle moving in the field of attractive and repulsive tPT potentials are obtained using the asymptotic iteration method(AIM).We present numerical results in the absence and presence of tensor coupling A and for various values of spin and p-spin constants and quantum numbers n and κ.The non-relativistic limit is also obtained.  相似文献   

5.
Using the Nikiforov-Uvarov (NU) method, pseudospin and spin symmetric solutions of the Dirac equation for the scalar and vector Hulthén potentials with the Yukawa-type tensor potential are obtained for an arbitrary spin-orbit coupling quantum number κ. We deduce the energy eigenvalue equations and corresponding upper- and lower-spinor wave functions in both the pseudospin and spin symmetry cases. Numerical results of the energy eigenvalue equations and the upper- and lower-spinor wave functions are presented to show the effects of the external potential and particle mass parameters as well as pseudospin and spin symmetric constants on the bound-state energies and wave functions in the absence and presence of the tensor interaction.  相似文献   

6.
Approximate analytical solutions of the Dirac equation are obtained for the Yukawa potential plus a tensor interaction with any κ-value for the cases having the Dirac equation pseudospin and spin symmetry. The potential describing tensor interaction has a Yukawa-like form. Closed forms of the energy eigenvalue equations and the spinor wave functions are computed by using the Nikiforov–Uvarov method. It is observed that the energy eigenvalue equations are consistent with the ones obtained before. Our numerical results are also listed to see the effect of the tensor interaction on the bound states.  相似文献   

7.
The bound-state solutions of the Dirac equation for the Manning-Rosen potential are presented approximately for arbitrary spin-orbit quantum number κ. The energy eigenvalues and corresponding two-component spinors of the two Dirac particles are obtained in the closed form by using the framework of the spin symmetry and pseudospin symmetry concept. Two special cases κ=±1 and the Hulthén potential are briefly investigated.  相似文献   

8.
We approximately solve the Dirac equation for a new suggested generalized inversely quadratic Yukawa potential including a Coulomb-like tensor interaction with arbitrary spin-orbit coupling quantum number ${\kappa}$ . In the framework of the spin and pseudospin (p-spin) symmetry, we obtain the energy eigenvalue equation and the corresponding eigenfunctions, in closed form, by using the parametric Nikiforov–Uvarov method. The numerical results show that the Coulomb-like tensor interaction, ?T/r, removes degeneracies between spin and p-spin state doublets. The Dirac solutions in the presence of exact spin symmetry are reduced to Schr?dinger solutions for Yukawa and inversely quadratic Yukawa potentials.  相似文献   

9.
In this paper,we solve the Dirac equation under spin symmetry limit for attractive radial potential including a Coulomb-like tensor interaction.By using the parametric generalization of the Nikiforov-Uvarov method,the energy eigenvalues equation and the corresponding wave functions have been obtained in closed forms.Some numerical results are given too.  相似文献   

10.
Approximate analytical solutions of the Dirac equation are obtained for some diatomic molecular potentials plus a tensor interaction with spin and pseudospin symmetries with any angular momentum. We find the energy eigenvalue equations in the closed form and the spinor wave functions by using an algebraic method. We also perform numerical calculations for the Pöschl-Teller potential to show the effect of the tensor interaction. Our results are consistent with ones obtained before.  相似文献   

11.
In the presence of spin and pseudospin (p-spin) symmetries, the approximate analytical bound states of the Dirac equation for scalar-vector-tensor Hulthn potentials are obtained with any arbitrary spin-orbit coupling number κ using the Pekeris approximation. The Hulthn tensor interaction is studied instead of the commonly used Coulomb or linear terms. The generalized parametric Nikiforov-Uvarov (NU) method is used to obtain energy eigenvalues and corresponding wave functions in their closed forms. It is shown that tensor interaction removes degeneracy between spin and p-spin doublets. Some numerical results are also given.  相似文献   

12.
The aim of this work is to find exact solutions of the Dirac equation in(1+1) space-time beyond the already known class.We consider exact spin(and pseudo-spin) symmetric Dirac equations where the scalar potential is equal to plus(and minus) the vector potential.We also include pseudo-scalar potentials in the interaction.The spinor wavefunction is written as a bounded sum in a complete set of square integrable basis,which is chosen such that the matrix representation of the Dirac wave operator is tridiagonal and symmetric.This makes the matrix wave equation a symmetric three-term recursion relation for the expansion coefficients of the wavefunction.We solve the recursion relation exactly in terms of orthogonal polynomials and obtain the state functions and corresponding relativistic energy spectrum and phase shift.  相似文献   

13.
In this Letter the approximately analytical bound state solutions of the Dirac equation with the Manning-Rosen potential for arbitrary spin-orbit coupling quantum number k are carried out by taking a properly approximate expansion for the spin-orbit coupling term. In the case of exact spin symmetry, the associated two-component spinor wave functions of the Dirac equation for arbitrary spin-orbit quantum number k are presented and the corresponding bound state energy equation is derived. We study briefly two special cases; the general s-wave problem and the equal scalar and vector Manning-Rosen potential.  相似文献   

14.
在赝自旋对称性势场中运动的相对论粒子的束缚态   总被引:1,自引:1,他引:0  
在赝自旋对称性条件下,分别求解了在Kratzer型、Hulthén型和Poschl-Teller型标量势与矢量势场中运动的相对论粒子的Klein-Gordon方程和Dirac方程,给出了它们的束缚态能谱和相对论性波函数.  相似文献   

15.
Resita Arum Sari  A Suparmi  C Cari 《中国物理 B》2016,25(1):10301-010301
The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation,then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function.  相似文献   

16.
Considering of a tensor interaction in Dirac equation removes the degeneracy in spin and pseudospin doublets and consequently leads to results consistent with the experimental data. Here, instead of the commonly used Coulomb or linear terms, we investigate a tensor interaction of Yukawa form. We obtain arbitrary state solutions of Dirac equation under vector, scalar and tensor Yukawa potentials via a physical approximation and the Nikiforov-Uvarov methodology. The solutions are discussed in detail.  相似文献   

17.
Considering of a tensor interaction in Dirac equation removes the degeneracy in spin and pseudospin doublets and consequently leads to results consistent with the experimental data. Here, instead of the commonly used Coulomb or linear terms, we investigate a tensor interaction of Yukawa form. We obtain arbitrary state solutions of Dirac equation under vector, scalar and tensor Yukawa potentials via a physical approximation and the Nikiforov-Uvarov methodology. The solutions are discussed in detail.  相似文献   

18.
We investigate the exact solution of the Dirac equation for the Mie-type potentials under the conditions of pseudospin and spin symmetry limits. The bound state energy equations and the corresponding two-component spinor wave functions of the Dirac particles for the Mie-type potentials with pseudospin and spin symmetry are obtained. We use the asymptotic iteration method in the calculations. Closed forms of the energy eigenvalues are obtained for any spin-orbit coupling term κ. We also investigate the energy eigenvalues of the Dirac particles for the well-known Kratzer-Fues and modified Kratzer potentials which are Mie-type potentials.  相似文献   

19.
Using an approximation scheme to deal with the centrifugal (pseudo-centrifugal) term, we solve the Dirac equation with the screened Coulomb (Yukawa) potential for any arbitrary spin-orbit quantum number κ. Based on the spin and pseudospin symmetry, analytic bound state energy spectrum formulas and their corresponding upper- and lower-spinor components of two Dirac particles are obtained using a shortcut of the Nikiforov-Uvarov method. We find a wide range of permissible values for the spin symmetry constant C s from the valence energy spectrum of particle and also for pseudospin symmetry constant C ps from the hole energy spectrum of antiparticle. Further, we show that the present potential interaction becomes less (more) attractive for a long (short) range screening parameter α. To remove the degeneracies in energy levels we consider the spin and pseudospin solution of Dirac equation for Yukawa potential plus a centrifugal-like term. A few special cases such as the exact spin (pseudospin) symmetry Dirac-Yukawa, the Yukawa plus centrifugal-like potentials, the limit when α becomes zero (Coulomb potential field) and the non-relativistic limit of our solution are studied. The nonrelativistic solutions are compared with those obtained by other methods.  相似文献   

20.
The pseudospin and spin symmetric solutions of the Dirac equation with Hulthén-type tensor interaction are obtained under multi-parameter-exponential potential (MEP) for arbitrary κ states. The energy eigenvalues and the corresponding eigenfunctions are also obtained using the parametric Nikiforov-Uvarov (NU) method. Some numerical results are also obtained for pseudospin and spin symmetry limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号