首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In this Letter, a generalized extended rational expansion method is used to construct exact solutions of the (1 + 1)-dimensional dispersive long wave equation. As a result, many new and more general exact solutions are obtained, the solutions obtained in this Letter include rational triangular periodic wave solutions, rational solitary wave solutions.  相似文献   

2.
In this paper, we construct new explicit exact solutions for the coupled the (2 + 1)-dimensional Konopelchenko–Dubrovsky equation (KD equation) by using a improved mapping approach and variable separation method. By means of the method, new types of variable-separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) for the KD system are successfully obtained. The improved mapping approach and variable separation method can be applied to other higher-dimensional coupled nonlinear evolution equations.  相似文献   

3.
In this paper, we present a new Riccati equation rational expansion method to uniformly construct a series of exact solutions for nonlinear evolution equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recover some known solutions, but also find some new and general solutions. The solutions obtained in this paper include rational triangular periodic wave solutions, rational solitary wave solutions and rational wave solutions. The efficiency of the method can be demonstrated on (2 + 1)-dimensional Burgers equation.  相似文献   

4.
In this paper, an extended mapping method with a computerized symbolic computation is used for constructing new periodic wave solutions for two nonlinear evolution equations arising in mathematical physics, namely, generalized nonlinear Schroedinger equation and generalized-Zakharov equations. As a result, many exact travelling wave solutions are obtained which include new periodic wave solutions, trigonometric function solutions and rational solutions. The method is straightforward and concise, and it can also applied to other nonlinear evolution equations.  相似文献   

5.
A new algebraic method is devised to obtain a series of exact solutions for general nonlinear equations. Compared with the most existing tanh methods, the proposed method gives new and more general solutions. More importantly, the method provides a guideline to classify the various types of the solution according to some parameters. For illustration, we apply the method to solve a new two-dimensional perturbed KdV equation and successfully construct the various kind of exact solutions including line soliton solutions, rational solutions, triangular periodic solutions, Jacobi, and Weierstrass doubly periodic solutions.  相似文献   

6.
We make use of the homogeneous balance method and symbolic computation to construct new exact traveling wave solutions for the Benjamin-Bona-Mahoney (BBM) equation. Many new exact traveling wave solutions are successfully obtained, which contain rational and periodic-like solutions. This method is straightforward and concise, and it can also be applied to other nonlinear evolution equations.  相似文献   

7.
In this paper, two nonlinear Schr\"{o}dinger equations with variable coefficients in nonlinear optics are investigated. Based on travelling wave transformation and the extended $(\frac{G''}{G})$-expansion method, exact travelling wave solutions to nonlinear Schr\"{o}dinger equation with time-dependent coefficients are derived successfully, which include bright and dark soliton solutions, triangular function periodic solutions, hyperbolic function solutions and rational function solutions.  相似文献   

8.
The elliptic equation method is improved for constructing exact travelling wave solutions of nonlinear partial differential equations (PDEs). The rational forms of Jacobi elliptic functions are presented. By using new Jacobi elliptic function solutions of the elliptic equation, new doubly periodic solutions are obtained for some important PDEs. This method can be applied to many other nonlinear PDEs.  相似文献   

9.
用试探方程法求Jaulent-Miodek方程的新的精确行波解   总被引:1,自引:0,他引:1  
利用试探方程法将Jaulent-Miodek方程约化为初等积分的形式,进而求出了该方程的精确行波解,其中包括椭圆函数双周期解和有理函数解等新解.  相似文献   

10.
A generalized method, which is called the generally projective Riccati equation method, is presented to find more exact solutions of nonlinear differential equations based upon a coupled Riccati equation. As an application of the method, we choose the higher-order nonlinear Schrodinger equation to illustrate the method. As a result more new exact travelling wave solutions are found which include bright soliton solutions, dark soliton solution, new solitary waves, periodic solutions and rational solutions. The new method can be extended to other nonlinear differential equations in mathematical physics.  相似文献   

11.
An extended mapping method with a computerized symbolic computation is used for constructing a new exact travelling wave solutions for nonlinear evolution equations arising in physics, namely, generalized Zakharov Kuznetsov equation with variable coefficients. As a result, many exact travelling wave solutions are obtained which include new periodic wave solution, trigonometric function solutions and rational solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations with variable coefficients arising in mathematical physics. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

12.
The Bäcklund transformations and abundant explicit exact solutions to the AKNS shallow water wave equation are obtained by combining the extended homogeneous balance method with the extended hyperbolic function method. The solutions obtained admit of multiple arbitrary parameters. These solutions include (a) a compound of the rational fractional function and a linear function, (b) a compound of solitary wave solution and a linear function, (c) a compound of the singular travelling wave solutions and a linear function, and (d) a compound of the periodic wave solutions of triangle function and a linear function. In special cases, we can obtain a series of soliton solutions, singular travelling wave solutions, periodic travelling wave solutions, and rational fractional function solution. In addition to re-deriving some known solutions in a systematic way, some brand-new exact solutions are also established.  相似文献   

13.
The multiple exact solutions for the nonlinear evolution equations describing the interaction of laser–plasma are developed. The extended hyperbolic function method are employed to reveal these new solutions. The solutions include that of the solitary wave solutions of bell-type for n and E, the solitary wave solutions of kink-type for E and bell-type for n, the solitary wave solutions of a compound of the bell-type and the kink-type for n and E, the singular traveling wave solutions, periodic traveling wave solutions of triangle function types, and solitary wave solutions of rational function types. In addition to re-deriving all known solutions in a systematic way, several new and more general solutions can be obtained by using our method.  相似文献   

14.
In this paper, we establish exact solutions for complex nonlinear equations. The tanh–coth and the sine–cosine methods are used to construct exact periodic and soliton solutions of these equations. Many new families of exact travelling wave solutions of the coupled Higgs and Maccari equations are successfully obtained. These solutions may be important of significance for the explanation of some practical physical problems.  相似文献   

15.
Burgers-BBM方程新的精确解   总被引:2,自引:0,他引:2  
借助两个推广形式的Riccati方程组和Mathematica软件,求出了Burgers-BBM方程,BBM方程,KDV—Burgers方程的大量新的精确解,包括各种形式的孤立波解和三角函数周期解.  相似文献   

16.
The repeated homogeneous balance is used to construct a new exact traveling wave solution of the Kadomtsev-Petviashvili (KP) like equation coupled to a Schrödinger equation, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation, respectively. Many new exact traveling wave solutions are successfully obtained, which contain rational and periodic-like solutions. This method is straightforward and concise, and it can be applied to other nonlinear evolution equations.  相似文献   

17.
In this paper, a method with the aid of a sub-ODE and its solutions is used for constructing new periodic wave solutions for nonlinear Gardner equation and BBM equation with nonlinear terms of any order arising in mathematical physics. As a result, many exact traveling wave solutions are successfully obtained. The method in the paper is very direct and it can also be applied to other nonlinear evolution equations.  相似文献   

18.
In this paper we consider the Boussinesq–Burgers equations and establish the transformation which turns the Boussinesq–Burgers equations into the single nonlinear partial differential equation, then we obtain an auto-Bäcklund transformation and abundant new exact solutions, including the multi-solitary wave solution and the rational series solutions. Besides the new trigonometric function periodic solutions are obtained by using the generalized tan h method.  相似文献   

19.
In this paper, we establish new solitary wave solutions to the modified Kawahara equation by the sine-cosine method. Moreover, the periodic solutions and bell-shaped solitons solutions to the generalized fifth-order KdV equation are obtained. The tanh method is used to handle the double sine-Gordon equation and the double sinh-Gordon equation. Families of exact travelling wave solutions are formally derived. The rational triangle sine-cosine method is introduced and to be constructed complex solutions to the modified Degasperis-Procesi (DP) equation and the modified Camassa-Holm (CH) equation.  相似文献   

20.
We extended the (G′/G)-expansion method to two well-known nonlinear differential-difference equations, the discrete nonlinear Schrödinger equation and the Toda lattice equation, for constructing traveling wave solutions. Discrete soliton and periodic wave solutions with more arbitrary parameters, as well as discrete rational wave solutions, are revealed. It seems that the utilized method can provide highly accurate discrete exact solutions to NDDEs arising in applied mathematical and physical sciences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号