首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temperature behavior of lattice parameters and diffraction patterns of the reciprocal lattice in Cs2HgCl4 crystals is studied by x-ray diffraction in the temperature range from 4.2 to 300 K. A sequence of phase transitions is observed and attributed to the evolution of incommensurate and commensurate modulations along the crystallographic a and c axes of a unit cell in the initial Pnma structure.  相似文献   

2.
Transmission electron microscopy was used to examine the dislocation structure of intermetallic Ti3Al subjected to deformation at tempertures T = 1073–1273 K. The microstructure of samples subjected to high-temperature deformation is established to contain mobile superdislocations of a and 2c + a types, and single dislocations with Burgers vector [0001] are also observed on the prismatic planes. Possible models of destruction of barriers associated with 2c + a superdislocations on the pyramidal planes are discussed using the results of computer simulations of the structure of a superdislocation core in in Ti3Al.  相似文献   

3.
It is found that perfect Bi2Sr2?x La x CuO6+δ single crystals with the same concentrations of lanthanum x = 0.64 and excess oxygen δ = 0.237 exist in two types. Single crystals of the first type are obtained by slow cooling (the synthesis time is 90–105 h). They have a monoclinic superlattice and exhibit no superconducting transition down to 2 K. Crystals of the second type are obtained by rapid cooling (the synthesis time is 30–40 h) and are characterized by a orthorhombic superlattice and T c = 18 K. Thus, the superconducting transition temperature is determined not only by the concentration of carriers but also by the configuration of defects. A rhombic superlattice prevails in single crystals obtained by slow cooling in the lanthanum concentration range x = 0.3–0.5, while a monoclinic superlattice dominates in the range x = 0.75–0.85. This fact explains the high values of T c at optimal doping (x = 0.4) and the absence of high-T c superconductivity at p < 0.10.  相似文献   

4.
The unmodulated and wavelength-modulated reflectivity spectra of CuGaS2 crystals for the polarization Ec, kc at 77 and 8 K have been studied. The states n=1, 2, and 3 of A excitons and n=1 and 2 of B and C excitons are established. The luminescence spectra from the surface at kc and kc are obtained. The fine structure of the reflectivity spectra of excitons are analyzed with due regard for the normal and oblique incidence of light onto the crystal surface. The main parameters of the A, B, and C excitonic series are determined such as the energies of the longitudinal and transverse excitons Γ4 (E ‖ c) for states n=1 and 2, the longitudinal and the transverse mass of excitons in CuGaS 2, and the effective masses of electrons (m c1*) and holes (m v1*, m v2*, m v3*). It is shown that the mass m v1* in the upper valence band at kc equals (0.7–0.8)m 0 and at kc, 1.87m 0.  相似文献   

5.
High-quality undoped Bi2201 single crystals were obtained by free growth in gas-filled cavities formed in the volume of a KCl melt. The superconducting transition temperature Tc was found to be affected by the crystallization temperature Tcryst and varied from 10 to 2 K as Tcryst increased from 840 to 860 °C. The crystals with the highest Tc both in the underdoped and overdoped states were near the maximum of doping curve.  相似文献   

6.
Tunneling characteristicsdI/dV have been taken on both sides of “dirty”In - Bi/Zn superimposed films, the temperatureT being such thatIn - Bi was superconducting and Zn normal. Most of the attention has been devoted to the regionTT c where the experimental curves can be compared with a reasonably accurate microscopic theory. We find reasonable agreement for the voltage scale and, more important, for theamplitude of the effects in the superconducting phase.  相似文献   

7.
The formation and specific features of the superstructure in La0.33Ca0.67Mn1?y Fe y O3 (y = 0, 0.05) manganites doped with iron are investigated using transmission electron microscopy. The electron diffraction patterns of the manganites are studied in the temperature range 90–300 K, and the high-resolution electron microscope images recorded at temperatures of 91–92 K are analyzed. In both manganites, the structural transition that is accompanied by the formation of the superstructure and which is directly observed from the appearance of additional peaks in the electron diffraction patterns occurs at a temperature that is in close agreement with the charge ordering temperature T CO determined from the temperature dependences of the magnetization M(T). In the temperature range 90 < T < 200 K, the undoped compound has a commensurate superstructure characterized by the vector q = 1/3a* and triple the unit cell «3a × b × c» (where ab ≈ √2a c , c ≈ 2a c , and a c ~ 3.9 Å is the lattice parameter of a simple perovskite). The doping with iron (5 at. %) brings about a decrease in the charge ordering temperature T CO by 50 K and the formation of an incommensurate structure for which the magnitude of the vector q is smaller by approximately 15%. The unit cell of the superstructure in the iron-doped compound is not triple the unit cell but involves defects of ordering, such as quadrupling of the unit cell, numerous translations by a c √2 along the a direction, and dislocation-type defects in the stripe structure of the charge ordering. These pseudoperiodic defects lead to a decrease in the magnitude of the vector q and are responsible for the incommensurability of the structure. A decrease in the charge ordering temperature T CO due to the doping with iron and the incommensurability of the superstructure correlate with the change in the concentration of Mn3+ Jahn-Teller ions as a result of their replacement by Fe3+ non-Jahn-Teller ions.  相似文献   

8.
Resonant relaxation of the dislocation structure under the action of crossed magnetic fields, i.e., constant magnetic field of the Earth (B Earth) and alternating radio-frequency field ( $\tilde B$ ), has been experimentally studied in a series of dielectric (NaCl) crystals with various compositions of impurities under variations in the frequency, direction of the pumping field $\tilde B$ , and orientation of the samples in the Earth’s magnetic field. The frequency dependence of the dislocation path length l(ν) exhibits peaks with various heights (l max) and resonant frequencies (νres). The maximum resonant effect has been observed for dislocations with the direction L orthogonal to the plane of crossed magnetic fields in a configuration of mutually perpendicular vectors {L, $\tilde B$ , B Earth} belonging, together with sample edges {a, b, c}, to the 〈100〉 system. Variation of the concentration C of calcium impurity in crystals of the NaClCa series only influenced the resonant peak height as $l_{\max } \propto 1/\sqrt C $ . Rotation of the magnetic field $\tilde B$ in the (b, c) plane from direction $\tilde B$ B Earth to $\tilde B$ B Earth also did not influence the frequency of the resonance but changed its amplitude. Depending on the crystal type, this influence changed from rather insignificant (in crystals of the NaClLOMO series) to complete suppression of the effect for $\tilde B$ B Earth (in the NaClNik series). The resonant frequency νres is sensitive to orientation of the sample with respect to B Earth. Upon rotation of the crystal by the angle θ = ∠(c, B Earth) about the aB Earth edge, the initial peak for dislocations La at the crystal orientation θ = 0 and the frequency ν res 0 is replaced by a pair of peaks at frequencies ν1, 2 ≈ ν res 0 cosθ1, 2, where θ1 = 90° ? θ and θ2 = θ. Previously, these peaks were observed separately in NaClNik crystals for $\tilde B$ c and $\tilde B$ b. In the present study, these peaks have been observed simultaneously for both orientations of $\tilde B$ in NaClLOMO and NaClCa crystals, where the resonance is not completely suppressed for $\tilde B$ B Earth.  相似文献   

9.
The effect of neutron-bombardment-induced atomic disorder on the galvanomagnetic properties of Sr2RuO4 single crystals has been experimentally studied in a broad range of temperatures (1.7–380 K) and magnetic fields (up to 13.6 T). The disorder leads to the appearance of negative temperature coefficients for both the in-plane electric resistivity (ρa) and that along the c axis (ρc), as well as the negative magnetoresistance Δρ, which is strongly anisotropic to the magnetic field orientation (Ha and Hc), with the easy magnetization direction along the c axis and a weak dependence on the probing current direction in the low-temperature region. The experimental ρa(T) and ρc(T) curves obtained for the initial and radiation-disordered samples can be described within the framework of a theoretical model with two conductivity channels. The first channel corresponds to the charge carriers with increased effective masses (~10m e , where m e is the electron mass) and predominantly electron-electron scattering, which leads to the quadratic temperature dependences of ρa and ρc. The second channel corresponds to the charge carriers with lower effective masses exhibiting magnetic scattering at low temperatures, which leads to the temperature dependence of the ρa, c(T) ∝ 1/T type.  相似文献   

10.
The magnetic properties of a substituted Nd0.95Dy0.05Fe3(BO3)4 ferroborate single crystal with competing Nd-Fe and Dy-Fe exchange interactions are studied experimentally and theoretically. A spontaneous spin-reorientation transition is detected near T = 4.3 K, and anomalies are observed in the low-temperature magnetization curves along trigonal axis c and in basal plane ab. The measured properties and the detected effects are interpreted in terms of a general theoretical approach, which is based on the molecular field approximation and crystal field calculations for a rare-earth ion. The experimental temperature dependences of the initial magnetic susceptibility in the range 2–300 K, the anomalies in the magnetization curves for Bc and Bc in fields up to 1.5 T, and the field and temperature dependences of magnetization in fields up to 9 T are described. The effect of small substitution in the rare-earth subsystem on the magnetic properties is analyzed. The crystal field parameters and the parameters of the R-Fe and Fe-Fe exchange interactions are determined from the experimental data.  相似文献   

11.
The 55Mn nuclear magnetic resonance spectrum of noncollinear 12-sublattice antiferromagnet Mn3Al2Ge3O12 has been studied in the frequency range of 200–640 MHz in the external magnetic field H ‖ [001] at T = 1.2 K. Three absorption lines have been observed in fields less than the field of the reorientation transition H c at the polarization hH of the rf field. Two lines have been observed at H > H c and hH. The spectral parameters indicate that the magnetic structure of manganese garnet differs slightly from the exchange triangular 120-degree structure. The anisotropy of the spin reduction and (or) weak antiferromagnetism that are allowed by the crystal symmetry lead to the difference of ≈3% in the magnetization of sublattices in the field H < H c. When the spin plane rotates from the orientation perpendicular to the C 3 axis to the orientation perpendicular to the C 4 axis, all magnetic moments of the electronic subsystem decrease by ≈2% from the average value in the zero field.  相似文献   

12.
A theory of thermodynamic properties of a spin density wave (SDW) in a quasi-two-dimensional system (with a preset impurity concentration x) is constructed. We choose an anisotropic dispersion relation for the electron energy and assume that external magnetic field H has an arbitrary direction relative to magnetic moment M Q . The system of equations defining order parameters M Q z , M Q σ , M z , and M σ is constructed and transformed with allowance for the Umklapp processes. Special cases when HM Q and HM Q (H Z H σ = 0) are considered in detail as well as cases of weak fields H of arbitrary direction. The condition for the transition of the system to the commensurate and incommensurate states of the SDW is analyzed. The concentration dependence of magnetic transition temperature T M is calculated, and the components of the order parameter for the incommensurate phase are determined. The phase diagram (T,~x) is constructed. The effect of the magnetic field on magnetic transition temperature T M is analyzed for H Z H σ = 0, and longitudinal magnetic susceptibility χ‖ is calculated; this quantity demonstrates the temperature dependence corresponding to a system with a gap for x < x c and to a gapless state for x > x c . In the immediate vicinity of the critical impurity concentration (xx c ), the temperature dependence of the magnetic susceptibility acquires a local maximum. The effect of anisotropy of the electron energy spectrum on the investigated physical quantities is also analyzed.  相似文献   

13.
In this work, we study the long-term aging effect caused by Fe atoms in the superconductor CaLaBa{Cu1???xFex}3O7????? with 0 ?? x ?? 0.07. XRD confirms that this system has a YBCO-like structure. The critical temperature (Tc) is strongly affected by aging and depends on the amount of Fe in the structure. Room temperature Mössbauer spectroscopy reveals the presence of the typical species A, B?CB ??, C and new species E ?? and F. Interestingly; A, which corresponds to the Fe3?+? atom located in the Cu(1) of the chains with spin S z = 3/2, shows a drastic reduction which means migration to the species B, B ?? and C. Species B and B ?? correspond to the Fe3?+? in the Cu(2) site forming planar quasi-octahedral and planar square pyramidal, while the C specie is a square pyramidal with O(5) respectively (spin Sz = 3/2 in all these cases). Aging causes loss of superconductivity in the samples with 5 and 7% of iron content.  相似文献   

14.
The magnetostriction and thermal expansion of rare-earth aluminoborate HoAl3(BO3)4 have been studied theoretically. The calculated field and temperature dependences of the multipole moments of the Ho3+ ion in HoAl3(BO3)4 made it possible to describe the known experimental data and to predict possible anomalies of thermal expansion. It has been shown that, for the direction of the field Bc, the nonmonotonic character of magnetostriction along the axis a is determined by the multipole moments, the main of which is β J O 4 0 〉. For Ba and Bb, the maximum moments are β J O 4 2 〉and α J O 2 2 〉; their variation with the field and temperature explain well the form of magnetostriction. It has been established that the greater value of magnetostriction Δa/a for Bb than for Ba and the greater value of magnetostriction for the field in the basal plane than for Bc are caused by greater variations in the field of actual multipole moments.  相似文献   

15.
The thermal electromotive force (emf) in Bi quantum wires has been calculated in the model of potential in the form of a paraboloid of revolution in a uniform magnetic field H, which is normal to the axis of the studied nanostructure, and in a direct-current (dc) electric field EH. It has been shown that, with an increase in E, the thermal emf α xx is described by a nonmonotonic function at different values of H. A physical interpretation of this behavior of α xx as a function of E is proposed with account for the interaction between carriers and the rough surface of the nanowire.  相似文献   

16.
Theorem. Let a topological groupG be represented (a→φ a ) by *-automorphisms of a von Neumann algebraR acting on a separable Hilbert spaceH. Suppose that
  1. G is locally compact and separable,
  2. R′ is properly infinite,
  3. for anyTR,x,yH the function
$$a \to \left\langle {\phi _a (T)x,y} \right\rangle _H $$ is measurable onG. Then there exists a strongly continuous unitary representation ofG onH,aU a , such that forTR,aG, $$\phi _\alpha (T) = U_a TU_a *.$$ .  相似文献   

17.
A novel series colorimetric and off–on fluorescent chemosensors (2a, 2b, 2c) were designed and synthesized, which showed reversible and highly selective and sensitive recognition toward Fe3+ over other examined metal ions. Upon addition of Fe3+, sensors (2a, 2b) exhibit remarkably and 2c exhibits moderate enhanced absorbance intensity and color change from colorless to pink in CH3OH–H2O(1:1, v/v). The three compounds (2a, 2b, 2c) may therefore be applicable as rhodamine-based turn-on type fluorescent chemosensors.  相似文献   

18.
The region in the HT phase diagram near the critical temperature (T c ) of the cubic helicoidal MnSi magnet is comprehensively studied by small-angle neutron diffraction. Magnetic field H is applied along the [111] axis. The experimental geometry is chosen to simultaneously observe the following three different magnetic states of the system: (a) critical fluctuations of a spin spiral with randomly orientated wavevector k f , (b) conical structure with k c H, and (c) hexagonal skyrmion lattice with kskH. Both states (conical structure, and skyrmion lattice) are shown to exist above critical temperature T c = 29 K against the background of the critical fluctuations of a spin spiral. The conical lattice is present up to the temperatures where fluctuation correlation length ξ becomes comparable with pitch of spiral d s . The skyrmion lattice is localized near T c and is related to the fluctuations of a spiral with correlation length ξ ≈ 2d s , and the propagation vector is normal to the field (kskH). These spiral fluctuations are assumed to be the defects that stabilize the skyrmion lattice and promote its formation.  相似文献   

19.
The T-odd correlation (k α · [σ × k γ])(k α · k γ), where σ is the vector of the neutron polarization and the symbols k denote the respective linear momenta (all vectors are unit ones), in the sequential alpha-gamma cascade induced by a thermal-neutron capture is studied. The study is performed in the one-resonance approximation. Both the final-state interaction of the alpha particle with the residual nucleus and the actual T-noninvariant phase shift are considered as possible origins of the correlation. The problem of suitable target isotopes is analyzed. Related correlations in other neutron- and proton-induced reactions are discussed.  相似文献   

20.
The magnetic properties of single crystals of erbium iron garnet (ErIG) were studied in applied fields up to 150kOe between 1.4 and 300K. At low temperature, the macroscopic easy direction of the bulk magnetization is [100]; below the compensation temperature (80±2K), the magnetization presents non-linear field evolution. On the assumption of an isolated ground doublet, the anisotropy constantsK i (i=1,2) of ErIG are given byK i (Er)+K i (YIG); theK i are calculated as a function of theG andg tensor components. It is worthwhile noting that theK i (Er) are strongly temperature dependent; so at low temperature the anisotropy of the garnet is determined by the rare earth ions, while in the 50 K regionK 1(Er) becomes comparable toK 1(YIG) with the opposite sign which results in a very weak anisotropy of the garnet. Above 50 K,K 1(YIG) is predominant and the Fe3+ ions determine the garnet anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号