首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UV-SERS measurements offer a great potential for environmental or food (detection of food contaminats) analytics. Here, the UV-SERS enhancement potential of various kinds of metal colloids, such as Pd, Pt, Au, Ag, Au-Ag core-shell, and Ag-Au core-shell with different shapes and sizes, were studied using melamine as a test molecule. The influence of different activation (KF, KCl, KBr, K(2)SO(4)) agents onto the SERS activity of the nanomaterials was investigated, showing that the combination of a particular nanoparticle with a special activation agent is extremely crucial for the observed SERS enhancement. In particular, the size dependence of spherical nanoparticles of one particular metal on the activator has been exploited. By doing so, it could be shown that the SERS enhancement increases or decreases for increasing or decreasing size of a nanoparticle, respectively. Overall, the presented results demonstrate the necessity to adjust the nanoparticle size and the activation agent for different experiments in order to achieve the best possible UV-SERS results.  相似文献   

2.
We describe a novel surface-enhanced Raman scattering (SERS) tag that is based on Au/Ag core-shell nanostructures embedded with p-aminothiophenol. The Au/Ag core-shell sandwich nanostructures demonstrate bright and dark stripe structure and possess very strong SERS activity. Under optimum conditions, the maximum SERS signal was obtained with a 10?nm thick Ag nanoshell, and the enhancement factor is 3.4?×?104 at 1077?cm?1. After conjugation to the antibody of muramidase releasing protein (MRP), the Au/Ag core-shell nanostructures were successfully applied to an SERS-based detection scheme for MRP based on a sandwich type of immunoassay.
Figure
A novel SERS tag of p-Aminothiophenol (pATP) embedded Au/Ag core-shell nanostructures were prepared by adding precursor solution (AgNO3) into the original Au nanoparticles (NPs) solution. The synthesized SERS tags, as a biosensers, were further applied to detect a biomarker protein of SS2  相似文献   

3.
Core-shell Ag-Au nanoparticles from replacement reaction in organic medium   总被引:3,自引:0,他引:3  
The replacement reaction between hydrophobized Ag nanoparticles and hydrophobized AuCl4- in toluene has been examined in detail. The conclusions obtained under our experimental conditions are different from those reported in the literature in three aspects: (1) a detectable contraction of the Ag nanoparticle sacrificial templates during the course of the reaction is shown; (2) the deposition of Au on the shrunken Ag templates inhibits further Ag oxidation, resulting in the formation of core-shell Ag-Au nanoparticles instead of Au nanoshells; and (3) the significant red-shift in the surface plasmon resonance (SPR) band is more of a consequence of shape and chemical composition changes rather than as an indication of Au nanoshell formation. Solvent and temperature are influential environmental factors that determine the structure and composition of nanoparticles formed by the replacement reaction.  相似文献   

4.
Au/Ag核-壳结构纳米粒子的制备及其SERS效应   总被引:1,自引:0,他引:1  
随着大量有关表面增强拉曼散射 (SERS)的实验和理论研究的开展 ,金属纳米粒子作为一类重要的 SERS增强介质 ,已引起了人们浓厚的研究兴趣 [1] .而 Au和 Ag作为最常用的活性基底物质 ,更是研究的热点 [2 ,3 ] .最近 ,美国印第安那大学的 Nie等 [4 ] 在单个银纳米粒子上 ,观察到高达 1 0 14 ~ 1 0 15的SERS因子 .同时 ,他们的另外一项工作表明银纳米粒子的形状和大小对 SERS活性有很大影响 [5] .但是 ,由于 Ag溶胶制备的重复性较差 ,且粒度分布不均匀 ,通过控制银颗粒大小而调控 SERS活性是相当困难的[6] .与 Ag相比 ,Au在可见光…  相似文献   

5.
Au-Ag合金纳米粒子制备及其表面增强拉曼光谱研究   总被引:1,自引:1,他引:1  
首先采用柠檬酸钠法制得Au-Ag合金纳米种子, 然后采用盐酸羟胺生长法得到不同组成的Au-Ag合金纳米粒子. 在其UV-Vis光谱中只观察到一个位于单金属银和金之间的等离子体共振峰, 表明Au-Ag合金纳米粒子已经形成. TEM结果表明, 合金纳米粒子的粒径约为60 nm, 且颜色均一, 没有明显的核壳结构. 用苯硫酚(TP)作为探针分子研究了合金纳米粒子的表面增强拉曼光谱(SERS). 结果表明, SERS强度与合金纳米粒子的组成和尺寸有关. 当纳米粒子粒径一定时, 除Au25Ag75外, 随着金的增加SERS强度增强. Au25Ag75的粒径比Ag小, 导致SERS强度比Ag低. Au50Ag50和Au75Ag25加入TP分子后, 其聚集方式与Au相似, 等离子体共振峰逐渐靠近1064 nm, 金含量较高时, TP的SERS归于聚集体的等离子体共振增强的贡献.  相似文献   

6.
黄洁  姚建林  顾仁敖 《化学学报》2007,65(22):2505-2509
采用自组装技术在硅基底上进行金银纳米粒子的混合组装, 通过控制组装溶液中金银溶胶的体积比而控制基底上金银纳米粒子的密度. SEM结果显示金银呈亚单层均匀分布, 以吡啶为探针分子, 在不同波长的激发光下研究了纯金、银以及混合组装时的SERS效应. 利用金银在不同激发线下增强效应的不同以及探针分子吸附在金银纳米粒子表面主要谱峰相对强度差别的特点, 通过一系列校正以及差谱方法研究了金银共存时SERS效应的变化, 并分离出混合体系中金的增强行为, 结果表明在金银同时组装时吡啶的SERS谱峰特征主要表现为银纳米粒子的行为, 分离出的金SERS光谱特征接近银的行为, 说明金银纳米粒子之间产生了一定的耦合作用.  相似文献   

7.
在已制备好的Ag纳米粒子表面,通过化学还原的方法沉积生长Au包裹层,制备了粒子尺寸为50-70nm的Ag核Au壳复合纳米粒子.通过改变AuCl4-量,使Ag100-xAux中Au的含量由x=0变为x=30.用UV-Vis吸收光谱和透射电子显微镜(TEM)对该结构纳米粒子进行了表征,并以对巯基苯胺(PATP)为探针分子进行表面增强拉曼光谱(SERS)研究.表面拉曼光谱表明,该结构的纳米粒子具有比Ag更强的SERS活性,随着Au:Ag比例的逐渐增加,其活性呈现先增大后减小的趋势,其最大增强约为Ag纳米粒子的10倍.  相似文献   

8.
以金纳米花为种子, 抗坏血酸和硝酸银混合物作为生长溶液制备了Au-Ag纳米花. 当Ag/Au的摩尔比从0增加到0.3时, 银可以在Au种子表面沉积, 得到的Au-Ag纳米花光谱在592~518 nm之间连续可调, 同时纳米花的枝长逐渐减小; 而当Ag/Au摩尔比大于0.3时, 还原的银出现自成核现象. 与Au纳米花相比, Au-Ag纳米花体现出了更好的Raman增强活性.  相似文献   

9.
Layered core-shell bimetallic silver-gold nanoparticles were prepared by coating Au layers over Ag seeds by a seed-growth method. The composition of Ag100-xAux particles can vary from x=0 to 30. TEM and SEM images clearly show that the bimetallic nanoparticles are of core-shell structure with some pinholes on the surface. Strong surface-enhanced Raman (SER) signals of thiophenol and p-aminothiophenol have been obtained with these colloids. It was found that the SERS activity of aggregated colloids critically depends on the molar ratio of Ag to Au. With the increase of the Au molar fraction, the SERS activity enhances first and then weakens, with the maximal intensity being 10 times stronger than that of Ag colloids. The AgcoreAushell nanoparticles were then labeled with monoclonal antibodies and SERS probes and used for immunoassay analysis. In the proposed system, antibodies immobilized on a solid substrate can interact with the corresponding antigens to form a composite substrate, which can capture reporter-labeled AgcoreAushell nanoparticles modified with the same antibodies. The immunoreaction between the antibodies and antigens was demonstrated by the detection of characteristic Raman bands of the probe molecules. AgcoreAushell bimetallic nanoparticles, as a new SERS active and biocompatible substrate, will be expected to improve the detection sensitivity of immunoassay.  相似文献   

10.
Au@SiO2核壳纳米粒子的制备及其表面增强拉曼光谱   总被引:2,自引:0,他引:2  
采用柠檬酸钠还原氯金酸法制备金溶胶, 以正硅酸乙酯(TEOS)为硅源, 氨水作催化剂, 制备以金为核, 二氧化硅为壳的核壳纳米粒子. 金纳米粒子的粒径可以通过柠檬酸钠和氯金酸的比例控制, 通过调节TEOS的量和反应的时间可以控制二氧化硅壳层的厚度. 以苯硫酚为探针分子研究了核壳结构纳米粒子的表面增强拉曼散射(SERS)效应与二氧化硅壳层厚度之间的关系. 研究结果表明, 金内核电磁场增强效应随着二氧化硅壳层厚度的增加逐渐减弱, 且其衰减速度比具有相同尺度的双金属核壳结构纳米粒子的慢. 此外, 探针分子主要以物理作用吸附在二氧化硅的表面, 可通过洗涤方法将探针分子除去, 从而可使该复合结构基底用于循环SERS分析.  相似文献   

11.
氧化乐果的振动光谱及其表面增强拉曼散射研究   总被引:2,自引:0,他引:2  
采用ATR-FTIR、FT-拉曼表征了氧化乐果在酸、碱、中性条件下的振动光谱,获得了氧化乐果分子较为全面的结构振动信息;以金/银核-壳粒子为基底,获得了不同浓度及其酸碱条件下氧化乐果的表面增强拉曼散射(SERS)光谱,考察了其分子在该基底表面的吸附状态及其酸碱影响,推测了氧化乐果的SERS机理;结果表明:νas(NH),νas(CH3),Amide Ⅰ,ν( POC ),ν( PO ),ν(C-S)为氧化乐果分子特征振动;中性条件下,氧化乐果浓度低于2.0×10-2 mol/L已无明显SERS,酸、碱条件下,在2.0×10-10 mol/L氧化乐果分子与基底的作用仍显著,尤其酸性的SERS更强;氧化乐果主要以磷酸酯结构与基底表面作用,探讨了酸碱条件下的不同水解历程对该作用的影响,为研究有机磷农药的形态变化提供了参考.  相似文献   

12.
Fabrication of nanorattles with passive shell   总被引:1,自引:0,他引:1  
This investigation describes the formation of a metal nanorattle with a pure metal shell by varying experimental parameters. The galvanic replacement reaction between silver and chloroauric acid was adopted to prepare hollow metal nanoparticles. This approach is extended to produce nanorattles of Au cores and Au shells by starting with Au(core)Ag(shell) nanoparticles as templates. The effect of temperature on the nanostructure of the final product is also considered. The composition of the shell in nanorattles can be controlled by varying the reaction temperature (to form pure gold or gold-silver alloy, for example). X-ray absorption fine structure spectroscopy is conducted to elucidate the fine structure of these nanoparticles. Partial alloying between the Au core and the Ag shell is observed by extended X-ray absorption fine structure (EXAFS).  相似文献   

13.
We report on the use of Neem (Azadirachta indica) leaf broth in the extracellular synthesis of pure metallic silver and gold nanoparticles and bimetallic Au/Ag nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with Neem leaf extract, the rapid formation of stable silver and gold nanoparticles at high concentrations is observed to occur. The silver and gold nanoparticles are polydisperse, with a large percentage of gold particles exhibiting an interesting flat, platelike morphology. Competitive reduction of Au3+ and Ag+ ions present simultaneously in solution during exposure to Neem leaf extract leads to the synthesis of bimetallic Au core-Ag shell nanoparticles in solution. Transmission electron microscopy revealed that the silver nanoparticles are adsorbed onto the gold nanoparticles, forming a core-shell structure. The rates of reduction of the metal ions by Neem leaf extract are much faster than those observed by us in our earlier studies using microorganisms such as fungi, highlighting the possibility that nanoparticle biological synthesis methodologies will achieve rates of synthesis comparable to those of chemical methods.  相似文献   

14.
Raman scattering measurements were conducted for a 4-aminobenzenethiol (4-ABT) monolayer assembled on a macroscopically smooth Au substrate. Although no peak was detected at the beginning, Raman peaks were distinctly observed by attaching Ag or Au nanoparticles onto the 4-ABT monolayer (Ag(Au)@4-ABT/Au(flat)). Considering the fact that no Raman signal is observed when Ag (Au) nanoparticles are adsorbed on a (4-aminophenyl)silane monolayer assembled on a silicon wafer, the Raman spectrum observed for Ag(Au)@4-ABT/Au(flat) must be a surface-enhanced Raman scattering (SERS) spectrum, derived from the electromagnetic coupling of the localized surface plasmon of Ag (Au) nanoparticles with the surface plasmon polariton of the underneath Au metal. The electromagnetic coupling responsible for SERS appeared to be governed more by the bulk Au substrate than the sparsely distributed Ag or Au nanoparticles. The chemical enhancement appeared on the other hand to be derived more from the formation of Au-S bonds than any charge-transfer interaction between the protonated amine group and the Au or Ag nanoparticles. The enhancement factors derived from the attachment of a single Ag or Au nanoparticle onto 4-ABT on Au were estimated to be as large as 8.3 x 10(5) and 5.0 x 10(5), respectively, (for the ring 3 band (b(2)) near 1390 cm(-1)) in which a factor of approximately 10(2) was presumed to be due to the chemical effect, with the remaining contributed by the electromagnetic effect.  相似文献   

15.
Polystyrene (PS)/gold (Au) core-shell nanocomposites with tunable size, high stability, and excellent catalytic activity have been synthesized by a facile method that combines the ionic self-assembly with the in situ reduction. The composition and stoichiometry, as well as its morphology and optical properties of these nanocomposites have been examined and verified by various characterization techniques. The size and the coverage of gold nanoparticles (NPs) can be simply tailored by changing the amount of 3-aminopropyltrimethoxysilane (APTES), the functionalization time, the protonation time, and the amount of chloroauric acid (HAuCl4). The continuous red shifts of the localized surface plasmon resonance absorption of the Au NPs on the PS spheres are observed. Importantly, the obtained Au NPs with controllable and uniform size on the surfaces of amino-functionalized PS spheres exhibit excellent size-dependent catalytic properties for the reduction of 4-nitrophenol (4-NP) by NaBH4.  相似文献   

16.
通过种子生长法合成Au@Pt核壳结构纳米粒子,采用两相成膜法制备单层粒子膜,并转移获得Au@Pt核壳纳米粒子单层膜电极,该电极表面纳米粒子分布均匀,具有较大的比表面,对甲醇的氧化具有较好的电催化活性.研究表明,利用内核Au的长程电磁场增强效应,该单层膜表现出均匀且优良的表面增强拉曼散射(SERS)活性,适合作为基底在分子水平上研究表面的吸附和反应.获得了Au@Pt核壳纳米粒子单层膜表面甲醇电催化氧化过程的SERS光谱,为深入分析表面反应机理提供了实验依据.  相似文献   

17.
A seed mediated procedure for the synthesis of hydrophobic Au(core)Ag(shell) nanoparticles in toluene is demonstrated. The reaction proceeds by way of the interfacial reduction of silver ions by 3-pentadecylphenol followed by their deposition on hydrophobized Au nanoparticles. Such a hitherto unreported interfacial seeded growth reaction leads to the formation of phase pure Au(core)Ag(shell) nanoparticles that retain the hydrophobicity of the seed particles and remain stable in toluene. Such core-shell structures are however not formed in the aqueous phase. The core-shell architecture was verified using TEM analysis and the formation process was studied by recording the UV-vis spectra of the organic phase nanoparticles as a function of time. TEM kinetics also showed gradual increase in the silver layer thickness. Conclusive evidence was however obtained on examination of the HRTEM images of the products formed. Elemental analysis using X-ray photoelectron spectroscopy of the Au(core)Ag(shell) nanostructure revealed the presence of metallic silver. Moreover changing the surface capping of the Au seed does not affect the formation of the Au(core)Ag(shell) nanostructure.  相似文献   

18.
通过简单的一步水热法制备了TiO2核壳微球,然后经过原位光还原将Ag负载于其表面,成功得到了用于有机分子检测的Ag负载TiO2核壳表面增强拉曼散射(SERS)基底。得益于TiO2核壳微球的结构,其对结晶紫(CV)分子表现出高的吸附容量。单一TiO2核壳微球对CV的检测限为10-3 M,而负载Ag以后,其对CV的检测限能达到10-7 M,增强因子(EF)可达3.49×105。优异的SERS检测性能可能归因于以下几点:(1)半导体TiO2为Ag纳米粒子提供了均匀分散的骨架,创造了高密度的热点;(2)为CV分子提供了大的吸附面积;(3)复合材料促进了激发光子的相互作用。  相似文献   

19.
Li R  Zhang H  Chen QW  Yan N  Wang H 《The Analyst》2011,136(12):2527-2532
Au nanoparticles (NPs) forming a Au shell are coated on the surfaces of Ni microparticles (MPs) through a simple redox-transmetalation reaction, forming Ni/Au core-shell MPs. Then Au hollow spheres (HSs) are prepared by etching the Ni core in 1 mol L(-1) HCl solution. Surface-enhanced Raman scattering (SERS) spectroscopy signals of typical analytes such as rhodamine 6G (R6G) are observed on micro-scale Au HSs, even though the concentration of the analyte is as low as 10(-15) mol L(-1) (R6G). The Au HSs are also applied to detect tetracycline (TC), and a strong SERS signal is observed with the TC concentration of 0.1 μg L(-1). The quantitative analysis can be performed at 1595 and 1320 cm(-1), and a good linear response is also obtained. This work provides a potential and unique technique to detect broad-spectrum polyketide antibiotics in the future, and the detection of TC in foods and milk can also be performed using this SERS-based Au HSs substrate, which will benefit human health.  相似文献   

20.
This paper reports a study on the preparation of Ag-clad Au colloidal monolayer films by a combination of colloid self-assembly and liquid phase microwave high-pressure technique. Firstly, monodisperse Au nanoparticles prepared by microwave heating method were assembled onto a quartz slide. Then, these Au colloidal particles on the quartz surface acted as seeds for growing the Ag-clad Au composite particulate films. The obtained particulate films were characterized by UV-Vis spectra and atomic force microscopy. It was found that the thickness of the shell and thus the size of particles in the composite colloidal films could be controlled by deposition of Ag on the preformed Au colloidal particle film in the microwave reaction system, and such films significantly increased the surface-enhanced Raman scattering enhancement (SERS) ability compared with Au colloidal particle films. Their strong enhancement ability may mainly stem from relatively large particle consisting of Ag cladding as well as effective coupling among particles in the Ag-clad Au particle ftlms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号