首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cyclostibane R(4)Sb(4)(1)(R = 2-(Me(2)NCH(2))C(6)H(4)) was synthesized by reduction of RSbCl(2) with Mg in THF or with Na in liquid NH(3). The reaction of 1 with [W(CO)(5)(THF)] gives the stibinidene complex RSb[W(CO)(5)](2)(2). RSbCl(2) and (RSbCl)(2)E [E = O (6), E = S (8)] react with KOH or Na(2)S in toluene/water to give the heterocycles (RSbE)(n)[E = O, n= 3 (3); E = S, n= 2 (4)]. The chalcogeno-bridged compounds of the type (RSbCl)(2)E [E = O (6), E = S (8)] were synthesized by reaction of RSbCl(2) with KOH or Na(2)S in toluene/water, but also by reaction of RSbCl(2) with the heterocycles (RSbE)(n). The compounds (RSbI)(2)O (7) and (RSbBr)(2)S (9) were prepared via halogen-exchange reactions between (RSbCl)(2)E and NaI (E = O) or KBr (E = S) or by reactions between RSbI(2) and KOH or RSbBr(2) and Na(2)S. The reaction of cyclo-(RSbS)(2) with W(CO)(5)(THF) in THF results in trapping of the cis isomer in cyclo-(RSbS)(2)[W(CO)(5)](5). The solution behaviour of the compounds was investigated by (1)H and (13)C NMR spectroscopy. The molecular structures of compounds 1-7 and 9 were determined by single-crystal X-ray diffraction.  相似文献   

2.
Reactions of [M(SR)(3)(PMe(2)Ph)(2)] (M = Ru, Os; R = C(6)F(4)H-4, C(6)F(5)) with CS(2) in acetone afford [Ru(S(2)CSR)(2)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 1; C(6)F(5), 3) and trans-thiolates [Ru(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 2; C(6)F(5), 4) or the isomers trans-thiolates [Os(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 5; C(6)F(5), 7) and trans-thiolate-phosphine [Os(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 6; C(6)F(5), 8) through processes involving CS(2) insertion into M-SR bonds. The ruthenium(III) complexes [Ru(SR)(3)(PMe(2)Ph)(2)] react with CS(2) to give the diamagnetic thiolate-thioxanthato ruthenium(II) and the paramagnetic ruthenium(III) complexes while osmium(III) complexes [Os(SR)(3)(PMe(2)Ph)(2)] react to give the paramagnetic thiolate-thioxanthato osmium(III) isomers. The single-crystal X-ray diffraction studies of 1, 4, 5, and 8 show distorted octahedral structures. (31)P [(1)H] and (19)F NMR studies show that the solution structures of 1 and 3 are consistent with the solid-state structure of 1.  相似文献   

3.
A series of group 6 transition metal half-sandwich complexes with 1,1-dichalcogenide ligands have been prepared by the reactions of Cp*MCl(4)(Cp* = eta(5)-C(5)Me(5); M = Mo, W) with the potassium salt of 2,2-dicyanoethylene-1,1-dithiolate, (KS)(2)C=C(CN)(2) (K(2)-i-mnt), or the analogous seleno compound, (KSe)(2)C=C(CN)(2) (K(2)-i-mns). The reaction of Cp*MCl(4) with (KS)(2)C=C(CN)(2) in a 1:3 molar ratio in CH(3)CN gave rise to K[Cp*M(S(2)C=C(CN)(2))(2)] (M = Mo, 1a, 74%; M = W, 2a, 46%). Under the same conditions, the reaction of Cp*MoCl(4) with 3 equiv of (KSe)(2)C=C(CN)(2) afforded K[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3a) and K[Cp*Mo(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))] (4) in respective yields of 45% and 25%. Cation exchange reactions of 1a, 2a, and 3a with Et(4)NBr resulted in isolation of (Et(4)N)[Cp*Mo(S(2)C=C(CN)(2))(2)] (1b), (Et(4)N)[Cp*W(S(2)C=C(CN)(2))(2)] (2b), and (Et(4)N)[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3b), respectively. Complex 4 crystallized with one THF and one CH(3)CN molecule as a three-dimensional network structure. Inspection of the reaction of Cp*WCl(4) with (KSe)(2)C=C(CN)(2) by ESI-MS revealed the existence of three species in CH(3)CN, [Cp*W(Se(2)C=C(CN)(2))(2)]-, [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-, and [Cp*W(Se(Se(2))C=C(CN)(2))(2)]-, of which [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-(5) was isolated as the main product. Treatment of 2a with 1/4 equiv of S(8) in refluxing THF resulted in sulfur insertion and gave rise to K[Cp*W(S(2)C=C(CN)(2))(S(S(2))C=C(CN)(2))](6), which crystallized with two THF molecules forming a three-dimensional network structure. 6 can also be prepared by refluxing 2a with 1/4 equiv of S(8) in THF. 3a readily added one Se atom upon treatment with 1 mol of Se powder in THF to give 4 in high yield, while the treatment of 3a or 4 with 2 equiv of Na(2)Se in THF led to formation of a dinuclear complex [(Cp*Mo)(2)(mu-Se)(mu-Se(Se(3))C=C(CN)(2))] (7). The structure of 7 consists of two Cp*Mo units bridged by a Se(2-) and a [Se(Se(3))C=C(CN)(2)](2-) ligand in which the triselenido group is arranged in a nearly linear way (163 degrees). The reaction of 2a with 2 equiv of CuBr in CH(3)CN yielded a trinuclear complex [Cp*WCu(2)(mu-Br)(mu(3)-S(2)C=C(CN)(2))(2)] (8), which crystallized with one CH(3)CN and generated a one-dimensional chain polymer through bonding of Cu to the N of the cyano groups.  相似文献   

4.
The molecular and electronic structures of the four members, [Cr(tpy)(2)](PF(6))(n) (n = 3-0; complexes 1-4; tpy = 2,2':6',2″-terpyridine), of the electron transfer series [Cr(tpy)(2)](n+) have been determined experimentally by single-crystal X-ray crystallography, by their electro- and magnetochemistry, and by the following spectroscopies: electronic absorption, X-ray absorption (XAS), and electron paramagnetic resonance (EPR). The monoanion of this series, [Cr(tpy)(2)](1-), has been prepared in situ by reduction with KC(8) and its EPR spectrum recorded. The structures of 2, 3, 4, 5, and 6, where the latter two compounds are the Mo and W analogues of neutral 4, have been determined at 100(2) K. The optimized geometries of 1-6 have been obtained from density functional theoretical (DFT) calculations using the B3LYP functional. The XAS and low-energy region of the electronic spectra have also been calculated using time-dependent (TD)-DFT. A consistent picture of the electronic structures of these octahedral complexes has been established. All one-electron transfer processes on going from 1 to 4 are ligand-based: 1 is [Cr(III)(tpy(0))(2)](PF(6))(3) (S = (3)/(2)), 2 is [Cr(III)(tpy(?))(tpy(0))](PF(6))(2) (S = 1), 3 is [Cr(III)(tpy(?))(2)](PF(6)) (S = (1)/(2)), and 4 is [Cr(III)(tpy(??))(tpy(?))](0) (S = 0), where (tpy(0)) is the neutral parent ligand, (tpy(?))(1-) represents its one-electron-reduced π radical monoanion, (tpy(2-))(2-) or (tpy(??))(2-) is the corresponding singlet or triplet dianion, and (tpy(3-))(3-) (S = (1)/(2)) is the trianion. The electronic structure of 2 cannot be described as [Cr(II)(tpy(0))(2)](PF(6))(2) (a low-spin Cr(II) (d(4); S = 1) complex). The geometrical features (C-C and C-N bond lengths) of these coordinated ligands have been elucidated computationally in the following hypothetical species: [Zn(II)Cl(2)(tpy(0))](0) (S = 0) (A), [Zn(II)(tpy(?))Cl(NH(3))](0) (S = (1)/(2)) (B), [Zn(II)(tpy(2-))(NH(3))(2)](0) (S = 0 or 1) (C), and [Al(III)(tpy(3-))(NH(3))(3)](0) (S = (1)/(2) and (3)/(2)) (D). The remarkable electronic structure of the monoanion has been calculated and experimentally verified by EPR spectroscopy to be [Cr(III)(tpy(2-))(tpy(??))](1-) (S = (1)/(2)), a complex in which the two dianionic tpy ligands differ only in the spin state. It has been clearly established that coordinated tpy ligands are redox-active and can exist in at least four oxidation levels.  相似文献   

5.
Chen CH  Lee GH  Liaw WF 《Inorganic chemistry》2006,45(5):2307-2316
The shift of the IR nu(S)(-)(H) frequency to lower wavenumbers for the series of complexes [Ni(II)(L)(P-(o-C6H4S)2(o-C6H4SH))]0/1- (L = PPh3 (1), Cl (6), Se-p-C6H4-Cl (5), S-C4H3S (7), SePh (4)) indicates that a trend of increasing electronic donation of the L ligands coordinated to the Ni(II) center promotes intramolecular [Ni-S...H-S] interactions. Compared to the Ni...S(H) distance, in the range of 3.609-3.802 A in complexes 1 and 4-7, the Ni...S(CH3) distances of 2.540 and 2.914 A observed in the [Ni(II)(PPh3)(P(o-C6H4S)2(o-C6H4-SCH3))] complexes (8a and 8b, two conformational isomers with the chemical shift of the thioether methyl group at delta 1.820 (-60 degrees C) and 2.109 ppm (60 degrees C) (C4D8O)) and the Ni...S(CH3) distances of 3.258 and 3.229 A found in the [Ni(II)(L)(P(o-C6H4S)2(o-C6H4-SCH3))]1- complexes (L = SPh (9), SePh (10)) also support the idea that the pendant thiol protons of the Ni(II)-thiol complexes 1/4-7 were attracted by both the sulfur of thiolate and the nickel. The increased basicity (electronic density) of the nickel center regulated by the monodentate ligand attracted the proton of the pendant thiol effectively and caused the weaker S...H bond. In addition, the pendant thiol interaction modes in the solid state (complexes 1a and 1b, Scheme 1) may be controlled by the solvent of crystallization. Compared to complex 1a, the stronger intramolecular [Ni-S...H-S] interaction (or a combination of [Ni-S...H-S]/[Ni...H-S] interactions) found in complexes 4-7 led to the weaker S-H bond strength and accelerated the oxidation (by O2) of complexes 4-7 to produce the [Ni(Y)(L)(P(o-C6H4S)3)]1- (L = Se-p-C6H4-Cl (11), SePh (12), S-C4H3S (13)) complexes.  相似文献   

6.
Voltammetric, photo-physical and photo-electrochemical properties of the Dawson polyoxometalate anions alpha-[S(2)M(18)O(62)](4-) (M = Mo, W) are presented, both in the presence and absence of a series of [Ru(II)L(n)](+/2+) cations [L(n) = (bpy)(3), (bpy)(2)(Im)(2), (bpy)(2)(dpq), (bpy)(2)(box) and (biq)(2)(box)]. Electrochemical processes for both the anion and Ru(II/III) couples were detected in solutions of the salts [Ru(II)L(n)](2)[S(2)M(18)O(62)] in dimethylformamide (0.1 M Bu(4)NPF(6)) by both cyclic and hydrodynamic voltammetries. Responses were also detected when the solid salts were adhered to the surface of a glassy carbon electrode in contact with an electrolyte in which they are insoluble (CH(3)CN; 0.1M Bu(4)NPF(6)). Photolysis experiments were performed on solutions of the salts [R(4)N](4)[S(2)M(18)O(62)] (R = n-butyl or n-hexyl) and [Ru(II)L(n)](2)[S(2)M(18)O(62)] at 355 and 420 nm in dimethylformamide and acetonitrile in the presence and absence of benzyl alcohol (10% v/v). When associated with [Ru(bpy)(3)](2+), the molybdate anion exhibited a large increase in the quantum yield for photo-reduction at 420 nm. The quantum yield for the tungstate analogue was lower but the experiments again provided clear evidence for sensitization of the photo-reduction reaction in the visible spectral region. The origin of this sensitization is ascribed to the new optical transition observed around 480 nm in static ion clusters {[Ru(bpy)(3)][S(2)M(18)O(62)]}(2-) and {[Ru(bpy)(3)](2)[S(2)M(18)O(62)]} present in solution. Measurable photocurrents resulted from irradiation of solutions of the anions with white light in the presence of the electron donor dimethylformamide. Evidence is also presented for possible quencher-fluorophore interactions in the presence of certain [Ru(II)L(n)](+) cations.  相似文献   

7.
A series of homodinuclear platinum(II) complexes containing bridging chalcogenido ligands, [Pt(2)(mu-E)(2)(P empty set N)(4)] (P empty set N=dppy, E=S (1), Se (2); P empty set N=tBu-dppy, E=S (3)) (dppy=2-(diphenylphosphino)pyridine, tBu-dppy=4-tert-butyl-2-(diphenylphosphino)pyridine) have been synthesized and characterized. The nucleophilicity of the [Pt(2)E(2)] unit towards a number of d(10) metal ions and complexes has been demonstrated through the successful isolation of a number of novel heteropolynuclear platinum(II)-copper(I), -silver(I), and -gold(I) complexes: [[Pt(2)(mu(3)-E)(2)(dppy)(4)](2)Ag(3)](PF(6))(3) (E=S (4); Se (5)) and [Pt(2)(dppy)(4)(mu(3)-E)(2)M(2)(dppm)]X(2) (E=S, M=Ag, X=BF(4) (6); E=S, M=Cu, X=PF(6) (7); E=S, M=Au, X=PF(6) (8); E=Se, M=Ag, X=PF(6) (9); E=Se, M=Au, X=PF(6) (10)). Some of them display short metal.metal contacts. These complexes have been found to possess interesting luminescence properties. Through systematic comparison studies, the emission origin has been probed.  相似文献   

8.
Reactions of coordinatively unsaturated Ru[N(Ph2PQ)2]2(PPh3) (Q = S (1), Se (2)) with pyridine (py), SO2, and NH3 afford the corresponding 18e adducts Ru[N(Ph2PQ)2]2(PPh3)(L) (Q = S, L = NH3 (5); Q = Se, L = py (3), SO2 (4), NH3 (6)). The molecular structures of complexes 2 and 6 are determined. The geometry around Ru in 2 is pseudo square pyramidal with PPh3 occupying the apical position, while that in 6 is pseudooctahedral with PPh3 and NH3 mutually cis. The Ru-P distances in 2 and 6 are 2.2025(11) and 2.2778(11) A, respectively. The Ru-N bond length in 6 is 2.185(3) A. Treatment of 1 or 2 with substituted hydrazines L or NH2OH yields the respective adducts Ru[N(Ph2PQ)2]2(PPh3)(L) (Q = S, L = NH2NH2 (12), t-BuNHNH2 (14), l-aminopiperidine (C5H10NNH2) (15); Q = Se, L = PhCONHNH2 (7), PhNHNH2 (8), NH2OH (9), t-BuNHNH2 (10), C5H10NNH2 (11), NH2NH2 (13)), which are isolated as mixtures of their trans and cis isomers. The structures of cis-14 and cis-15 are characterized by X-ray crystallography. In both molecular structures, the ruthenium adopts a pseudooctahedral arrangement with PPh3 and hydrazine mutually cis. The Ru-N bond lengths in cis-14.CH2Cl2 and cis-15 are 2.152(3) and 2.101(3) A, respectively. The Ru-N-N bond angles in cis-14.CH2Cl2 and cis-15 are 120.5(4) and 129.0(2) degrees, respectively. Treatment of 1 with hydrazine monohydrate leads to the isolation of yellow 5 and red trans-Ru[N(Ph2PS)2]2(NH3)(H2O) (16), which are characterized by mass spectrometry, 1H NMR spectroscopy, and elemental analyses. The geometry around ruthenium in 16 is pseudooctahedral with the NH3 and H2O ligands mutually trans. The Ru-O and Ru-N bond distances are 2.118(4) and 2.142(6) A, respectively. Oxidation reactions of the above ruthenium hydrazine complexes are also studied.  相似文献   

9.
Hexarhenium(III) complexes with terminal isothiocyanate ligands, [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)(NCS)(6)] (1) and (L)(4)[Re(6)(mu(3)-Se)(8)(NCS)(6)] (L(+) = PPN(+) (2a), (n-C(4)H(9))(4)N(+) (2b)), have been prepared by three different methods. Complex 1 was prepared by the reaction of [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)Cl(6)] with molten KSCN at 200 degrees C, while 2b was obtained by refluxing the chlorobenzene-DMF (2:1 v/v) solution of [Re(6)(mu(3)-Se)(8)(CH(3)CN)(6)](SbF(6))(2) and [(n-C(4)H(9))(4)N]SCN. The [Re(6)(mu(3)-Se)(8)(NCS)(6)](4)(-) anion was also obtained from a mixture of Cs(2)[Re(6)(mu(3)-Se)(8)Br(4)] and KSCN in C(2)H(5)OH by a mechanochemical activation at room temperature for 20 h and isolated as 2a. The X-ray structures of 1 and 2a.4DMF have been determined (1, C(70)H(144)N(10)S(14)Re(6), monoclinic, space group P2(1)/n (No. 14), a = 14.464(7) A, b = 22.059(6) A, c = 16.642(8) A, beta = 113.62(3) degrees, V = 4864(3) A(3), Z = 2; 2a.4DMF, C(162)H(144)N(14)O(4)P(8)S(6)Se(8)Re(6), triclinic, space group P1 (No. 2), a = 15.263(2) A, b = 16.429(2) A, c = 17.111(3) A, alpha = 84.07(1) degrees, beta = 84.95(1) degrees, gamma = 74.21(1) degrees, V = 4098.3(8) A(3), Z = 1). All the NCS(-) ligands in both complexes are coordinated to the metal center via nitrogen site with the Re-N distances in the range of 2.07-2.13 A. The redox potentials of the reversible Re(III)(6)/Re(III)(5)Re(IV) process in acetonitrile are +0.84 and +0.70 V vs. Ag/AgCl for [Re(6)(mu(3)-S)(8)(NCS)(6)](4)(-) and [Re(6)(mu(3)-Se)(8)(NCS)(6)](4)(-), respectively, which are the most positive among the known hexarhenium complexes with six terminal anionic ligands. The complexes show strong red luminescence with the emission maxima (lambda(max)/nm), lifetimes (tau(em)/micros), and quantum yields (phi(em)) being 745 and 715, 10.4 and 11.8, and 0.091 and 0.15 for 1 and 2b, respectively, in acetonitrile. The data reasonably well fit in the energy-gap plots of other hexarhenium(III) complexes. The temperature dependence of the emission spectra and tau(em) of 1 and [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)Cl(6)] are also reported.  相似文献   

10.
Two enantiomers of [Bu(4)N](3)[Cu(3)(mnt)(3)] () formed by Na(2)(mnt) (mnt = maleonitriledithiolate, [S(2)C(2)(CN)(2)](2-)) and CuCl in a 1 : 1 molar ratio react further with MCl (M = Cu or Ag) involving both the enantiomers of to produce the larger complex, [Bu(4)N](4)[Cu(6)M(2)(mnt)(6)] (M = Cu (2), Ag (3)) from which the capped Cu(+) or Ag(+) ion can readily be removed by Bu(4)NX (X = Cl, Br), reverting or back to . Such reversal does not work with non-coordinating anions like BF(4)(-), ClO(4)(-) and PF(6)(-).  相似文献   

11.
A reinvestigation of the redox behavior of the [Fe(3)(&mgr;(3)-S)(CO)(9)](2)(-) dianion led to the isolation and characterization of the new [Fe(5)S(2)(CO)(14)](2)(-), as well as the known [Fe(6)S(6)(CO)(12)](2)(-) dianion. As a corollary, new syntheses of the [Fe(3)S(CO)(9)](2)(-) dianion are also reported. The [Fe(5)S(2)(CO)(14)](2)(-) dianion has been obtained by oxidative condensation of [Fe(3)S(CO)(9)](2)(-) induced by tropylium and Ag(I) salts or SCl(2), or more straightforwardly through the reaction of [Fe(4)(CO)(13)](2)(-) with SCl(2). The [Fe(6)S(6)(CO)(12)](2)(-) dianion has been isolated as a byproduct of the synthesis of [Fe(3)S(CO)(9)](2)(-) and [Fe(5)S(2)(CO)(14)](2)(-) or by reaction of [Fe(4)(CO)(13)](2)(-) with elemental sulfur. The structures of [N(PPh(3))(2)](2)[Fe(5)S(2)(CO)(14)] and [N(PPh(3))(2)](2)[Fe(6)S(6)(CO)(12)] were determined by single-crystal X-ray diffraction analyses. Crystal data: for [N(PPh(3))(2)](2)[Fe(5)S(2)(CO)(14)], monoclinic, space group P2(1)/c (No. 14), a = 24.060(5), b = 14.355(6), c = 23.898(13) ?, beta = 90.42(3) degrees, Z = 4; for [N(PPh(3))(2)](2)[Fe(6)S(6)(CO)(12)], monoclinic, space group C2/c (No. 15), a = 34.424(4), b = 14.081(2), c = 19.674(2) ?, beta = 115.72(1) degrees, Z = 4. The new [Fe(5)S(2)(CO)(14)](2)(-) dianion shows a "bow tie" arrangement of the five metal atoms. The two Fe(3) triangles sharing the central Fe atom are not coplanar and show a dihedral angle of 55.08(3) degrees. Each Fe(3) moiety is capped by a triply bridging sulfide ligand. The 14 carbonyl groups are all terminal; two are bonded to the unique central atom and three to each peripheral iron atom. Protonation of the [Fe(5)S(2)(CO)(14)](2)(-) dianion gives reversibly rise to the corresponding [HFe(5)S(2)(CO)(14)](-) monohydride derivative, which shows an (1)H-NMR signal at delta -21.7 ppm. Its further protonation results in decomposition to mixtures of Fe(2)S(2)(CO)(6) and Fe(3)S(2)(CO)(9), rather than formation of the expected H(2)Fe(5)S(2)(CO)(14) dihydride. Exhaustive reduction of [Fe(5)S(2)(CO)(14)](2)(-) with sodium diphenyl ketyl progressively leads to fragmentation into [Fe(3)S(CO)(9)](2)(-) and [Fe(CO)(4)](2)(-), whereas electrochemical, as well as chemical oxidation with silver or tropylium tetrafluoroborate, in dichloromethane, generates the corresponding [Fe(5)S(2)(CO)(14)](-) radical anion which exhibits an ESR signal at g = 2.067 at 200 K. The electrochemical studies also indicated the existence of a subsequent one-electron anodic oxidation which possesses features of chemical reversibility in dichloromethane but not in acetonitrile solution. A reexamination of the electrochemical behavior of the [Fe(3)S(CO)(9)](2)(-) dianion coupled with ESR monitoring enabled the spectroscopic characterization of the [Fe(3)S(CO)(9)](-) radical monoanion and demonstrated its direct involvement in the generation of the [Fe(5)S(2)(CO)(14)](n)()(-) (n = 0, 1, 2) system.  相似文献   

12.
Synthetic procedures are described that allow access to the [V(3)O(O(2)CR)(6)L(3)](ClO(4)) (R = various groups; L = pyridine (py), 4-picoline (pic) or 3,5-lutidine (lut)) family of complexes. Treatment of VCl(3)(THF)(3) with NaO(2)CR (R = Me, Et) in RCO(2)H/py, pic/MeCN, or CH(2)Cl(2) solution followed by addition of NBu(n)(4)ClO(4) leads to isolation of [V(3)O(O(2)CR)(6)L(3)](ClO(4)) salts in 47-95% yields. A similar procedure for R = C(6)H(5), C(6)H(4)-p-OMe, C(6)H(3)-m-Me(2), and C(6)H(4)-p-Cl but omitting addition of NaO(2)CR provides the corresponding benzoate or substituted-benzoate derivatives in 24-56% yields. The X-ray structure of [V(3)O(O(2)CEt)(6)(pic)(3)](ClO(4)) (4) shows the anion to consist of a [V(3)O](7+) triangular fragment with a &mgr;(3)-O(2)(-) ion in the V(3) plane; each triangular edge is bridged by two EtCO(2)(-) groups in their familiar syn,syn modes, and there is a terminal pic group on each V(III) completing distorted octahedral geometries at the metal atoms. The cation has imposed C(2) symmetry (isosceles V(3) triangle), the C(2) axis passing through one V atom and the central &mgr;(3)-O atom, but has D(3)(h)() virtual symmetry (equilateral V(3) triangle). Complex 4 crystallizes in monoclinic space group C2/c with the following unit cell dimensions at -171 degrees C: a = 13.935(2) ?, b = 18.323(2) ?, c = 17.470(2) ?, beta = 95.55(1) degrees, V = 4439.7 ?(3), Z = 4. The structure was solved using 2657 unique reflections with F > 3sigma(F) and refined on F to conventional R (R(w)) values of 0.058 (0.066). Variable-temperature, solid-state magnetic susceptibility measurements were made on complex 1 in the 5.01-280 K region in a 1 kG magnetic field. The effective magnetic moment (&mgr;(eff)) per V(3) unit decreases gradually from 4.64 &mgr;(B) at 280 K to 1.76 &mgr;(B) at 5.01 K. The data were fit to the theoretical expression for an isosceles V(III)(3) complex, and the fitting parameters were J = -18.0(7) cm(-)(1), J' = -10.4(4) cm(-)(1), and g = 1.985, with TIP held constant at 600 x 10(-)(6) cm(3) mol(-)(1); J' refers to the unique exchange interaction within the isosceles triangle. The ground state of complex 1 thus has S = 0.  相似文献   

13.
Lin CH  Chen CG  Tsai ML  Lee GH  Liaw WF 《Inorganic chemistry》2008,47(23):11435-11443
The reaction of MnBr(2) and [PPN](2)[S,S-C(6)H(3)-R] (1:2 molar ratio) in THF yielded [(THF)Mn(S,S-C(6)H(3)-R)(2)](-) [R = H (1a), Me (1b); THF = tetrahydrofuran]. Formation of the dimeric [Mn(S,S-C(6)H(3)-R)(2)](2)(2-) [R = H (2a), Me (2b)] was presumed to compensate for the electron-deficient Mn(III) core via two thiolate bridges upon dissolution of complexes 1a and 1b in CH(2)Cl(2). Complex 2a displays antiferromagnetic coupling interaction between two Mn(III) centers (J = -52 cm(-1)), with the effective magnetic moment (mu(eff)) increasing from 0.85 mu(B) at 2.0 K to 4.86 mu(B) at 300 K. The dianionic manganese(II) thiolate complexes [Mn(S,S-C(6)H(3)-R)(2)](2-) [R = H (3a), Me (3b)] were isolated upon the addition of [BH(4)](-) into complexes 1a and 1b or complexes 2a and 2b, respectively. The anionic mononuclear {Mn(NO)}(5) thiolatonitrosylmanganese complexes [(NO)Mn(S,S-C(6)H(3)-R)(2)](-) [R = H (4a), Me (4b)] were obtained from the reaction of NO(g) with the anionic complexes 1a and 1b, respectively, and the subsequent reduction of complexes 4a and 4b yielded the mononuclear {Mn(NO)}(6) [(NO)Mn(S,S-C(6)H(3)-R)(2)](2-) [R = H (5a), Me (5b)]. X-ray structural data, magnetic susceptibility measurement, and magnetic fitting results imply that the electronic structure of complex 4a is best described as a resonance hybrid of [(L)(L)Mn(III)(NO(*))](-) and [(L)(L(*))Mn(III)(NO(-))](-) (L = 1,2-benzenedithiolate) electronic arrangements in a square-pyramidal ligand field. The lower IR v(NO) stretching frequency of complex 5a, compared to that of complex 4a (shifting from 1729 cm(-1) in 4a to 1651 cm(-1) in 5a), supports that one-electron reduction occurs in the {(L)(L(*))Mn(III)} core upon reduction of complex 4a.  相似文献   

14.
On irradiating the complex cis-[RuCl(2)(mPTA)(4)](CF(3)SO(3))(4) (2) with near UV light at room temperature, (OC-6-13)-[RuCl(2)(mPTA)(3)(H(2)O)](CF(3)SO(3))(3) (3) was obtained. Complex 3 is the product of the substitution in 2 of one mPTA by a H(2)O molecule and the rearrangement from cis to trans of the two chlorides. The selective photo-reaction of 2 is produced with radiation of 300 < λ < 400 nm or with λ = 367 nm in 50 min (Φ(367 nm) (D(2)O) = 0.18 ± 0.01). The reaction is not reversible with visible light. The transformation of 2 into 3 is not dependent on the pH but only on the radiation used. Reaction of 3 with NaCl leads to (OC-6-21)-[RuCl(3)(mPTA)(3)](CF(3)SO(3))(2) (4) which could be directly obtained by irradiation of 2 with λ = 367 nm in water and 5 eq. of NaCl (Φ(367 nm) (D(2)O) = 0.17 ± 0.01). Complex 4 turns slowly to 2 in water with 1 eq. of mPTA under light of λ > 416 nm. Complete conversion of 4 into 2 was achieved after more than one day. All complexes were characterized by elemental analysis, IR and NMR spectroscopy, and 2, 3 and 4 by single crystal X-ray determination. An easy synthesis for the ligand mPTA(CF(3)SO(3)) is also reported.  相似文献   

15.
The syntheses, structures, and magnetic properties of two pentanuclear cyanide-bridged compounds are reported. The trigonal bipyramidal molecule [[Ni(tmphen)(2)](3)[Fe(CN)(6)](2)].14H(2)O, (1).14H(2)O (tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline) crystallizes in the space group P2(1)/c (No. 14) with unit cell parameters a = 19.531(4) A, b = 24.895(5) A, c = 24.522(5) A, beta = 98.68(3) degrees, V = 11787(4) A(3), and Z = 4. The pi-pi interactions between the tmphen ligands provide the closest intermolecular contacts of 3.37 A leading to large intermolecular M...M distances (> 8.68 A). The dc magnetic susceptibility of 1 indicates a ferromagnetically coupled S = 4 ground state best fit to the parameters g = 2.23, J = +4.3 cm(-1), and D(Ni) = +8.8 cm(-1) for the Hamiltonian H = -2J [(S(Fe(1)) + S(Fe(2))).(S(Ni(1)) + S(Ni(2)) + S(Ni(3)))] + D[S(Ni(1))(z)(2) + S(Ni(2))(z)(2) + S(Ni(3))(z)(2)]. The extended square molecule [Ni(bpy)(2)(H(2)O)][[Ni(bpy)(2)](2)[Fe(CN)(6)](2)].12H(2)O, (2).12H(2)O (bpy = 2,2'-bipyridine) crystallizes in the space group P1 (No. 2) with unit cell parameters a = 13.264(3) A, b = 17.607(4) A, c = 18.057(4) A, alpha = 94.58(3) degrees, beta = 103.29(3) degrees, gamma = 95.18(3) degrees, V = 4065(2) A(3), and Z = 2. The pi-pi interactions of 3.29 A between the bpy ligands are the closest intermolecular contacts, and the intermolecular M...M separations are greater than 7.76 A. The dc magnetic susceptibility data for 2 are also in accord with an S = 4 ground state arising from intramolecular ferromagnetic coupling. The data were best fit to the parameters g = 2.25, J = J' = +3.3 cm(-1), and D(Ni) = +5.8 cm(-1) for the Hamiltonian H = -2J[(S(Fe(1)) + S(Fe(2))).(S(Ni(1)) + S(Ni(2)))] - 2J'[(S(Fe(2)).S(Ni(3)))] + D[S(Ni(1))(z)(2) + S(Ni(2))(z)(2) + S(Ni(3))(z)(2)]. No evidence for long-range magnetic ordering was observed for crystalline samples of 1 or 2.  相似文献   

16.
The reaction of ketene OCCPh(2) with the four-coordinate titanium(IV) imide (L(1))Ti[double bond]NAr(OTf) (L(1)(-) = [Ar]NC(CH(3))CHC(CH(3))N[Ar], Ar = 2,6-[CH(CH(3))(2)](2)C(6)H(3)) affords the tripodal dimine-alkoxo complex (L(2))Ti[double bond]NAr(OTf) (L(2)(-) = [Ar]NC(CH(3))CHC(O)[double bond]CPh(2)C(CH(3))N[Ar]). Complex (L(2))Ti[double bond]NAr(OTf) forms from electrophilic attack of the beta-carbon of the ketene on the gamma-carbon of the Nacnac(-) NCC(gamma)CN ring. On the contrary, nucleophiles such as LiR (R(-) = Me, CH(2)(t)Bu, and CH(2)SiMe(3)) deprotonate cleanly in OEt(2) the methyl group of the beta-carbon on the former Nacnac(-) backbone to yield the etherate complex (L(3))Ti[double bond]NAr(OEt(2)), a complex that is now supported by a chelate bis-anilido ligand (L(3)(2)(-) = [Ar]NC(CH(3))CHC(CH(2))N[Ar]). In the absence of electrophiles or nucleophiles, the robust (L(1))Ti[double bond]NAr(OTf) template was found to form simple adducts with Lewis bases such as CN(t)Bu or NCCH(2)(2,4,6-Me(3)C(6)H(2)). Complexes (L(2))Ti[double bond]NAr(OTf), (L(3))Ti[double bond]NAr(OEt(2)), and the adducts (L(1))Ti[double bond]NAr(OTf)(XY) [XY = CN(t)Bu and NCCH(2)(2,4,6-Me(3)C(6)H(2))] were structurally characterized by single-crystal X-ray diffraction studies.  相似文献   

17.
The complexes trans-[Rh(X)(XNC)(PPh 3) 2] (X = Cl, 1; Br, 2; SC 6F 5, 3; C 2Ph, 4; XNC = xylyl isocyanide) combine reversibly with molecular oxygen to give [Rh(X)(O 2)(XNC)(PPh 3) 2] of which [Rh(SC 6F 5)(O 2)(XNC)(PPh 3) 2] ( 7) and [Rh(C 2Ph)(O 2)(XNC)(PPh 3) 2] ( 8) are sufficiently stable to be isolated in crystalline form. Complexes 2, 3, 4, and 7 have been structurally characterized. Kinetic data for the dissociation of O 2 from the dioxygen adducts of 1- 4 were obtained using (31)P NMR to monitor changes in the concentration of [Rh(X)(O 2)(XNC)(PPh 3) 2] (X = Cl, Br, SC 6F 5, C 2Ph) resulting from the bubbling of argon through the respective warmed solutions (solvent chlorobenzene). From data recorded at temperatures in the range 30-70 degrees C, activation parameters were obtained as follows: Delta H (++) (kJ mol (-1)): 31.7 +/- 1.6 (X = Cl), 52.1 +/- 4.3 (X = Br), 66.0 +/- 5.8 (X = SC 6F 5), 101.3 +/- 1.8 (X = C 2Ph); Delta S (++) (J K (-1) mol (-1)): -170.3 +/- 5.0 (X = Cl), -120 +/- 13.6 (X = Br), -89 +/- 18.2 (X = SC 6F 5), -6.4 +/- 5.4 (X = C 2Ph). The values of Delta H (++) and Delta S (++) are closely correlated (R (2) = 0.9997), consistent with a common dissociation pathway along which the rate-determining step occurs at a different position for each X. Relative magnitudes of Delta H (++) are interpreted in terms of differing polarizabilities of ligands X.  相似文献   

18.
The NMR and EPR spectra for three complexes, iron(III) octamethyltetraphenylporphyrin bis(4-cyanopyridine) perchlorate, [FeOMTPP(4-CNPy)(2)]ClO(4), and its octaethyl- and tetra-beta,beta'-tetramethylenetetraphenylporphyrin analogues, [FeOETPP(4-CNPy)(2)]ClO(4) and [FeTC(6)TPP(4-CNPy)(2)]ClO(4), are presented. The crystal structures of two different forms of [FeOETPP(4-CNPy)(2)]ClO(4) and one form of [FeOMTPP(4-CNPy)(2)]ClO(4) are also reported. Attempts to crystallize [FeTC(6)TPP(4-CNPy)(2)]ClO(4) were not successful. The crystal structure of [FeOMTPP(4-CNPy)(2)]ClO(4) reveals a saddled porphyrin core, a small dihedral angle between the axial ligand planes, 64.3 degrees, and an unusually large tilt angle (24.4 degrees ) of one of the axial 4-cyanopyridine ligands with respect to the normal to the porphyrin mean plane. There are 4 and 2 independent molecules in the asymmetric units of [FeOETPP(4-CNPy)(2)]ClO(4) crystallized from CD(2)Cl(2)/dodecane (1-4) and CDCl(3)/cyclohexane (5-6), respectively. The geometries of the porphyrin cores in 1-6 vary from purely saddled to saddled with 15% ruffling admixture. In all structures, the Fe-N(p) distances (1.958-1.976 A) are very short due to strong nonplanar distortion of the porphyrin cores, while the Fe-N(ax) distances are relatively long ( approximately 2.2 A) compared to the same distances in S = (1)/(2) bis(pyridine)iron(III) porphyrin complexes. An axial EPR signal is observed (g( perpendicular ) = 2.49, g( parallel ) = 1.6) in frozen solutions of both [FeOMTPP(4-CNPy)(2)]ClO(4) and [FeTC(6)TPP(4-CNPy)(2)]ClO(4) at 4.2 K, indicative of the low spin (LS, S = (1)/(2)), (d(yz)d(xz))(4)(d(xy))(1) electronic ground state for these two complexes. In agreement with a recent publication (Ikeue, T.; Ohgo, Y.; Ongayi, O.; Vicente, M. G. H.; Nakamura, M. Inorg. Chem. 2003, 42, 5560-5571), the EPR spectra of [FeOETPP(4-CNPy)(2)]ClO(4) are typical of the S = (3)/(2) state, with g values of 5.21, 4.25, and 2.07. A small amount of LS species with g = 3.03 is also present. However, distinct from previous conclusions, large negative phenyl-H shift differences delta(m) - delta(o) and delta(m) - delta(p) in the (1)H NMR spectra indicate significant negative spin density at the meso-carbons, and the larger than expected positive average CH(2) shifts are also consistent with a significant population of the S = 2 Fe(II), S = (1)/(2) porphyrin pi-cation radical state, with antiferromagnetic coupling between the metal and porphyrin unpaired electrons. This is the first example of this type of porphyrin-to-metal electron transfer to produce a partial or complete porphyrinate radical state, with antiferromagnetic coupling between metal and macrocycle unpaired electrons in an iron porphyrinate. The kinetics of ring inversion were studied for the [FeOETPP(4-CNPy)(2)]ClO(4) complex using NOESY/EXSY techniques and for the [FeTC(6)TPP(4-CNPy)(2)]ClO(4) complex using DNMR techniques. For the former, the free energy of activation, deltaG, and rate of ring inversion in CD(2)Cl(2) extrapolated to 298 K are 63(2) kJ mol(-)(1) and 59 s(-)(1), respectively, while for the latter the rate of ring inversion at 298 K is at least 4.4 x 10(7) s(-)(1), which attests to the much greater flexibility of the TC(6)TPP ring. The NMR and EPR data are consistent with solution magnetic susceptibility measurements that show S = (3)/(2) in the temperature range from 320 to 180 K for [FeOETPP(4-CNPy)(2)](+), while both [FeOMTPP(4-CNPy)(2)](+) and [FeTC(6)TPP(4-CNPy)(2)](+) change their spin state from S = (3)/(2) at room temperature to mainly LS (S = (1)/(2)) upon cooling to 180 K.  相似文献   

19.
Crystal structure and magnetic properties of Gd(2)([18]crown-6)(2)(OH)(2)(CH(3)CN)(2)[Ni(dmit)(2)](2) (dmit(2)(-) = 2-thioxo-1,3-dithiole-4,5-dithiolate) are reported. Gd(3+) ions (S = (7)/(2)) were introduced into the pi-spin network of [Ni(dmit)(2)](-) (S = (1)/(2)) complex as a binuclear supramolecular cation, Gd(2)([18]crown-6)(2)(OH)(2)(CH(3)CN)(2), in which two Gd([18]crown-6) units are bridged with two hydroxide ions. The weak antiferromagnetic interactions between Gd.Gd through hydroxide ions were observed, and [Ni(dmit)(2)](-) formed isolated monomers and dimers in the crystal.  相似文献   

20.
Nitrosyl complexes with {Ru-NO} (6) and {Ru-NO} (7) configurations have been isolated in the framework of [Ru(trpy)(L)(NO)] ( n+ ) [trpy = 2,2':6',2'-terpyridine, L = 2-phenylimidazo[4,5- f]1,10-phenanthroline] as the perchlorate salts [ 4](ClO 4) 3 and [ 4](ClO 4) 2, respectively. Single crystals of protonated material [ 4-H (+)](ClO 4) 4.2H 2O reveal a Ru-N-O bond angle of 176.1(7) degrees and triply bonded N-O with a 1.127(9) A bond length. Structures were also determined for precursor compounds of [ 4] (3+) in the form of [Ru(trpy)(L)(Cl)](ClO 4).4.5H 2O and [Ru(trpy)(L-H)(CH 3CN)](ClO 4) 3.H 2O. In agreement with largely NO centered reduction, a sizable shift in nu(NO) frequency was observed on moving from [ 4] (3+) (1953 cm (-1)) to [ 4] (2+) (1654 cm (-1)). The Ru (II)-NO* in isolated or electrogenerated [ 4] (2+) exhibits an EPR spectrum with g 1 = 2.020, g 2 = 1.995, and g 3 = 1.884 in CH 3CN at 110 K, reflecting partial metal contribution to the singly occupied molecular orbital (SOMO); (14)N (NO) hyperfine splitting ( A 2 = 30 G) was also observed. The plot of nu(NO) versus E degrees ({RuNO} (6) --> {RuNO} (7)) for 12 analogous complexes [Ru(trpy)(L')(NO)] ( n+ ) exhibits a linear trend. The electrophilic Ru-NO (+) species [ 4] (3+) is transformed to the corresponding Ru-NO 2 (-) system in the presence of OH (-) with k = 2.02 x 10 (-4) s (-1) at 303 K. In the presence of a steady flow of dioxygen gas, the Ru (II)-NO* state in [ 4] (2+) oxidizes to [ 4] (3+) through an associatively activated pathway (Delta S++ = -190.4 J K (-1) M (-1)) with a rate constant ( k [s (-1)]) of 5.33 x 10 (-3). On irradiation with light (Xe lamp), the acetonitrile solution of paramagnetic [Ru(trpy)(L)(NO)] (2+) ([ 4] (2+)) undergoes facile photorelease of NO ( k NO = 2.0 x 10 (-1) min (-1) and t 1/2 approximately 3.5 min) with the concomitant formation of the solvate [Ru (II)(trpy)(L)(CH 3CN)] (2+) [ 2'] (2+). The photoreleased NO can be trapped as an Mb-NO adduct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号