首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of neptunium, plutonium and americium with oxidizing or reducing agents in phosphoric acid solution has been studied to design a separation procedure of the actinide elements using coprecipitation with bismuth phosphate. In the presence of uranium, successive separation of neptunium, plutonium, americium and curium was accomplished by combining the coprecipitation and redox reaction of the elements. The coprecipitation behaviour of fission products during the course of sequential separation of the actinide elements on bismuth phosphate was also discussed.  相似文献   

2.
Synthetic inorganic exchangers exhibit good thermal and radiation stability. Thorium oxalate precipitate shows potential for co-precipitation of plutonium and americium from oxalate supernatant generated during plutonium oxalate precipitation. In the present study, efforts were made to prepare thorium oxalate precipitate to be used for column operation. Distribution ratios were determined to optimize conditions for sorption of plutonium and americium on thorium oxalate from nitric acid + oxalic acid solutions with composition similar to that of oxalate supernatant. Column experiments were also performed to evaluate the sorption capacity of thorium oxalate for plutonium and americium from the same medium. The result showed that, thorium oxalate prepared in 1.75M HNO3 at 70 °C is suitable for column operations. These studies showed that plutonium and americium could be simultaneously removed from aqueous solutions with composition similar to plutonium oxalate waste using glass column packed with thorium oxalate and these nuclides could be recovered by eluting with 3M HNO3.  相似文献   

3.
The sorption of transplutonium (TPE), rare-earth (RE) and other elements by anion-exchangers (Dowex 1 type) from aqueous alcoholic solutions of nitric acid and ammonium thiocyanate was investigated. This investigation allowed the development of simple and effective methods of americium—curium separation from frradiated plutonium. Plutonium, TPE (in a +3 oxidation state) and RE are firmly sorbed by the anion-exchanger from 1 M HNO3 in 90% alcohol, Fe, Al and fission products Cs, Sr, Nb, Zr, and Ru pass through the column under these conditions. The RE separation from TPE is achieved by washing the column with 0.5M NH4SCN in 80% alcohol. The column is then washed with 0.5 M HNO3 in 85% alcohol, and americium—curium separation proceeds. Use of this method for recovery of an irradiated plutonium target containing 100 mg Pu, Am and Cm is described.  相似文献   

4.
The possibility of using di-(2-ethylhexyl)-phosphoric acid (HDEHP) in solvent extraction for the separation of neptunium, plutonium, americium and curium from large amounts of uranium was studied. Neptunium, plutonium, americium and curium (as well as uranium) were extracted from HNO3, whereafter americium and curium were back-extracted with 5M HNO3. Thereafter was neptunium back-extracted in 1M HNO3 containing hydroxylamine hydronitrate. Finally, plutonium was back-extracted in 3M HCl containing Ti(III). The method separates238Pu from241Am for α-spectroscopy. For ICP-MS analysis, the interferences from238U are eliminated: tailing from238U, for analysis of237Np, and the interference of238UH+ for analysis of239Pu. The method has been used for the analysis of actinides in samples from a spent nuclear fuel leaching and radionuclide transport experiment.  相似文献   

5.
Curium was separated and recovered as an oxalate from a Cm–Pu mixed oxide which had been a 244Cm oxide sample prepared more than 40 years ago and the ratio of 244Cm to 240Pu was estimated to 0.2:0.8. Radiochemical analyses of the solution prepared by dissolving the Cm–Pu mixed oxide in nitric acid revealed that the oxide contained about 1 at% of 243Am impurity. To obtain high purity curium solution, plutonium and americium were removed from the solution by an anion exchange method and by chromatographic separation using tertiary pyridine resin embedded in silica beads with nitric acid/methanol mixed solution, respectively. Curium oxalate, a precursor compound of curium oxide, was prepared from the purified curium solution. 11.9 mg of Cm oxalate having some amounts of impurities, which are 243Am (5.4 at%) and 240Pu (0.3 at%) was obtained without Am removal procedure. Meanwhile, 12.0 mg of Cm oxalate (99.8 at% over actinides) was obtained with the procedure including Am removals. Both of the obtained Cm oxalate sample were supplied for the syntheses and measurements of the thermochemical properties of curium compounds.  相似文献   

6.
The sorption of protactinium on chelating resins, containing arsono groups, or other salt-forming groups on an aminopolystyrene lattice, is discussed. The chelating resins were synthesized by coupling diazotizedp-aminopolystyrene witho-hydroxyphenylarsonic acid, 2-arsonobenzene-(1-azo-2)-1,8-dihydroxynaphthalene-3,6-disulphonic acid (Arsenazo I) and some other monoazo derivatives of chromotropic acid. The dependence of sorption of Pa, Zr, Nb and Ta was investigated from hydrochloric acid and sulphuric acid solutions under static conditions as a function of the concentration of the acid. The feasibility of separating Pa from Fe, U, Zr, Nb, Th and Po is shown, using a solution 10N in respect to sulphuric acid and 0.3M in respect to oxalic acid and employing a resin obtained by coupling diazotized aminopolystyrene with Arsenazo I.  相似文献   

7.
The analysis of actinides in environmental soil and sediment samples is very important for environmental monitoring. There is a need to measure actinide isotopes with very low detection limits. A new, rapid actinide separation method has been developed and implemented that allows the measurement of plutonium, americium and curium isotopes in large soil samples (100–200 g) with high chemical recoveries and effective removal of matrix interferences. This method uses stacked TEVA Resin®, TRU Resin® and DGA-Resin® cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), americium (Am), and curium (Cm) using a single multi-stage column combined with alpha-spectrometry. The method combines an acid leach step and innovative matrix removal using cerium fluoride precipitation to remove the difficult soil matrix. This method is unique in that it provides high tracer recoveries and effective removal of interferences with small extraction chromatography columns instead of large ion-exchange resin columns that generate large amounts of acid waste. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized.  相似文献   

8.
A rapid extraction chromatography based methodology was developed for simultaneous recovery of plutonium and americium from various kinds of analytical waste obtained during chemical quality control of plutonium based nuclear materials using sulphonic acid based actinide? resin. Efforts were made to understand the effect of initial feed acidity, gamma radiation and the concentrations of Am3+ and Pu4+ on their k d. values. Processing of assorted analytical waste solutions through this method revealed that more than 95 % of Am3+ and 90 % of Pu4+ were adsorbed on the resin while iso- propanol can be successfully employed for the quantitative recovery of both the actinides from the loaded resin phase.  相似文献   

9.
The efficiency for the extraction of U(VI) of new modified silica gels, namely N-tripropionate (or N-triacetate)-substituted tetraazamacrocycles-bound silica gels, has been studied. The effect of the nature of the ligand, the pH and the temperature was studied both in batch experiments as well as in continuous extraction. These silica gels are good candidates for the extraction of U(VI) when compared to a commercially available acid-type chelating resin. The breakthrough and regeneration tests showed that the total removal of U(VI) from a contaminated solution can be achieved by using a column packed with such tetraazamacrocycles-bound silica gels. Finally, the use of a modified silica gel in a pilot device allowed the total decontamination of 50 m3 of real effluents containing traces of uranium, plutonium, and americium.  相似文献   

10.
Used nuclear fuel is radiotoxic for mankind and its environment for a long time. However, if it can be transmuted, the radiotoxicity as well as its heat load are reduced. Before a transmutation the actinides within the used fuel need to be separated from the fission, corrosion and activation products. This separation can be achieved by using the liquid–liquid extraction technique. One extraction process that can be used for such a separation is the Group ActiNide EXtraction (GANEX) process. One GANEX process that can successfully accomplish the separation utilizes the diluent cyclohexanone in combination with the extractant tributylphosphate (TBP) (30 % vol) and a second extractant, CyMe4-BTBP (10 mM). However, there are some issues when using cyclohexanone as diluent. In this work an alternative diluent has therefore been tried in order to determine if it can replace cyclohexanone. The diluent used was hexanoic acid. In a system containing 10–12 mM CyMe4-BTBP and 30 % vol TBP in hexanoic acid with the aqueous phase 4 M HNO3, the distribution ratios for americium and curium are unfortunately low (D Am = 1.1 ± 0.27, D Cm = 1.6 ± 1.81). The concentration of CyMe4-BTBP ligand, the extractant of curium and americium, could unfortunately not be increased, because of limited solubility in hexanoic acid. The distribution ratios for fission, corrosion and activation products were low for most metals; however, cadmium, palladium and molybdenum all unfortunately have distributions ratios above 1. To conclude, low americium and curium extractions indicate that hexanoic acid is not a suitable diluent which could replace cyclohexanone in a GANEX process.  相似文献   

11.
A new fecal analysis method that dissolves plutonium oxide was developedat the Westinghouse Savannah River Site. Diphonix Resin . (Eichrom Technologies),is used to pre-concentrate the actinides from digested fecal samples. A rapidmicrowave digestion technique is used to remove the actinides from the DiphonixResin ., which effectively extracts plutonium and americium from acidic solutionscontaining hydrofluoric acid. After resin digestion, the plutonium and americiumare recovered in a small volume of nitric acid that is loaded onto small extractionchromatography columns, TEVA Resin and TRU Resin (Eichrom Technologies). Themethod enables complete dissolution of plutonium oxide and provides high recoveryof plutonium and americium with good removal of thorium isotopes such as 228Th.  相似文献   

12.
The analysis of actinides and radiostrontium in animal tissue samples is very important for environmental monitoring. There is a need to measure actinide isotopes and strontium with very low detection limits in animal tissue samples, including fish, deer, hogs, beef and shellfish. A new, rapid separation method has been developed that allows the measurement of plutonium, neptunium, uranium, americium, curium and strontium isotopes in large animal tissue samples (100–200 g) with high chemical recoveries and effective removal of matrix interferences. This method uses stacked TEVA Resin®, TRU Resin® and DGA Resin® cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), neptunium (Np), uranium (U), americium (Am), and curium (Cm) using a single multi-stage column combined with alphaspectrometry. Strontium is collected on Sr Resin® from Eichrom Technologies (Darien, IL, USA). After acid digestion and furnace heating of the animal tissue samples, the actinides and 89/90Sr are separated using column extraction chromatography. This method has been shown to be effective over a wide range of animal tissue matrices. Vacuum box cartridge technology with rapid flow rates is used to minimize sample preparation time.  相似文献   

13.
An on-line method developed for separating plutonium and americium was developed. The method is based on the use of HPLC pump with three analytical chromatographic columns. Plutonium is reduced throughout the procedure to trivalent oxidation state, and is recovered in the various separation steps together with americium. Light lanthanides and trivalent actinides are separated with TEVA resin in thiocyanate/formic acid media. Trivalent plutonium and americium are pre-concentrated in a TCC-II cation-exchange column, after which the separation is performed in CS5A ion chromatography column by using two different eluents. Pu(III) is eluted with a dipicolinic acid eluent, and Am(III) with oxalic acid eluent. Radiochemical and chemical purity of the eluted plutonium and americium fractions were ensured with alpha-spectrometry.  相似文献   

14.
Spectrochemical procedures have been developed to determine impurities in americium and curium samples. The simultaneous separation of many impurity elements from the base material (americium and curium) is carried out with extraction and extraction-chromatographic methods using di(2-ethyl hexyl phosphoric acid (D2EHPA).

It is shown that part of the elements (alkalis, alkaline earths, silicon, tungsten, tantalum and other elements) are separated with extraction or sorption of americium and curium; the other part (rare earths, titanium, zirconium, niobium, molybdenum) with the Talspeak process.

Two fractions in the extraction chromatography and three fractions in the extraction separation of americium and curium, containing impurities, are analyzed separately by a.c. or d.c. arc spectrography. To increase the sensitivity of the spectrographic analysis and accelerate the burn-up of impurities from the crater of the carbon electrode bismuth fluoride and sodium chloride were used as chemically active substances. The extraction of impurities from weighed quantities of americium and curium samples of 5–10 mg permits the lower limit of determined impurity concentrations to be extended to 1 × 10−4–5 × 10−3% m/m.  相似文献   


15.
The kinetics of uranium, plutonium and americium electrodeposition on steel targets from organic solutions of diphenyl-(N,N-dibutyl) carbamoylmethylphosphine oxide supplemented with the ionic liquid of trihexyltetradecylphosphonium hexafluorophosphate ([PH4]+PF6 ?) in ethanol or N,N-dimethylformamide has been studied. When running a process in a dimethylformamide medium, and 0.05 M concentration of [PH4]+PF6 ? americium deposition degree exceeds 95 % at the electrolysis time of 2 h. Alpha-spectra resolution of obtained target does not exceed 40 keV.  相似文献   

16.
Sekine K  Imai T  Kasai A 《Talanta》1987,34(6):567-570
A procedure is described by which plutonium and americium can be determined in environmental samples. The sample is leached with nitric acid and hydrogen peroxide, and the two elements are co-precipitated with ferric hydroxide and calcium oxalate. The calcium oxalate is incinerated at 450 degrees and the ash is dissolved in nitric acid. Plutonium is extracted with tri-n-octylamine solution in xylene from 4M nitric acid and stripped with ammonium iodide/hydrochloric acid. Americium is extracted with thenoyltrifluoroacetone solution in xylene at pH 4 together with rare-earth elements and stripped with 1M nitric acid. Americium and the rare-earth elements thus separated are sorbed on Dowex 1 x 4 resin from 1M nitric acid in 93% methanol, the rare-earth elements are eluted with 0.1M hydrochloric acid/0.5M ammonium thiocyanate/80% methanol and the americium is finally eluted with 1.5M hydrochloric acid in 86% methanol. Plutonium and americium in each fraction are electro-deposited and determined by alpha-spectrometry. Overall average recoveries are 81% for plutonium and 59% for americium.  相似文献   

17.
Alpha emitting actinides such as plutonium, americium or curium were measured by alpha-spectrometry after radiochemical separation. The short range of alpha-particles within matter requires, after a pre-concentration process, a succession of isolation and purification steps based on the valence states modification of the researched elements. For counting, actinides were electrodeposited in view to obtain the mass-less source necessary to avoid self-absorption of the emitted radiations. Activity concentrations of gamma-emitting fission products were calculated after measurement with high purity germanium detectors (HPGe). These different methods were used to analyse soils sampled in the Republic of Belarus, not far from the Chernobyl nuclear plant.  相似文献   

18.
Summary The SRS Environmental Laboratory analyzes water samples for environmental monitoring, including river water and ground water samples. A new, faster actinide and 89/90Sr separation method has been developed and implemented to improve productivity, reduce labor costs and add capacity to this laboratory.This method uses stacked TEVA Resinò, TRU Resinòand Sr-Resinòcartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium, neptunium, uranium, americium, curium and thorium using a single multi-stage column combined with alpha-spectrometry. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized. The method can be used for routine analysis or as a rapid method for emergency preparedness. Thorium and curium are often analyzed separately due to the interference of the daughter of 229Th tracer, actinium (225Ac) on curium isotopes when measured by alpha-spectrometry. This new method also adds a separation step using DGA Resinò, (diglycolamide resin, Eichrom Technologies) to remove 225Ac and allow the separation and analysis of thorium isotopes and curium isotopes at the same time.  相似文献   

19.
Solvent extraction of lead, silver, antimony and thallium from various acid solutions was investigated with zinc-DBDTC as chelating reagent. These metals were quantitatively extracted over a wide range of acidity with 0.03% zinc-DBDTC solution in carbon tetrachloride. A separation procedure for bismuth from large amounts of lead was developed; bismuth was extracted from 1 M nitric acid with zinc-DBDTC and was separated from lead by subsequently washing the organic phase once with 3.5 M hydrochloric acid or twice with 3 M hydrochloric acid. Satisfactory results were obtained in separating microgram amounts of bismuth from 1 g of lead.  相似文献   

20.
Procedures are described for preparing macroreticular chelating resins with hydroxamic acid or N-methylhydroxamic acid functional groups. The chelating properties of the resins are compared with each other and with an N-phenylhydroxamic acid resin reported earlier. The extraction of 19 metal ions was studied as a function of pH for the N-methylhydroxamic acid resin. Several analytical applications of this resin have been demonstrated including the purification of chemical reagents, concentration of trace metal ions, and chromatographic separation of metal-ion mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号