首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ab initio calculations on the lowest singlet and triplet states of 2,2-disilylcyclopentane-1,3-diyl find that the singlet lies well below the triplet. The C 2 singlet diradical is calculated to be a minimum on the potential energy surface with an enthalpic barrier to ring closure of ΔH 298 = 13.5 kcal/mol at the CASPT2/6-31G* level of theory. The energy of the 1,3-divinyl-substituted singlet diradical is calculated to be only 0.8 kcal/mol higher than that of 5,5-disilyl-1,3-divinylbicyclo[2.1.0]pentane at this level of theory, but the transition state for their equilibration is computed to be 12.8 kcal/mol above the diradical in energy. Received: 2 July 1998 / Accepted: 4 August 1998 / Published online: 16 November 1998  相似文献   

2.
The ground state of the van der Waals-type lanthanide dimer Yb2 has been studied by means of relativistic energy-consistent ab initio pseudopotentials using three different core definitions. Electron correlation was treated by coupled-cluster theory, whereby core-valence correlation effects have been accounted for either explicitly by correlating the energetically highest coreorbitals or implicitly by means of an effective core-polarization potential. Results for the first and second atomic ionization potentials, the atomic dipole polarizability, and the spectroscopic constants of the molecular ground state are reported. Low-lying excited states have been investigated with spin-orbit configuration interaction calculations. It is also demonstrated for the whole lanthanide series that correlation effects due to the atomic-like, possibly open 4f-shell in lanthanides can be modeled effectively by adding a core-polarization potential to pseudopotentials attributing the 4f-shell to the core. Received: 3 April 1998 / Accepted: 27 July 1998 / Published online: 9 October 1998  相似文献   

3.
High-level ab initio electronic structure theories have been applied to investigate the detailed reaction mechanism of the spin-forbidden reaction CH(2∏) + N2 → HCN + N(4S). The G2M(RCC) calculations provide accurate energies for the intermediates and transition states involved in the reaction, whereas the B3LYP/6-311G(d,p) method overestimates the stability of some intermediates by as much as about 10 kcal/mol. A few new structures have been found for both the doublet and quartet electronic states, which are mainly involved in the dative pathways. However, due to the higher energies of these structures, the dominant mechanism remains the one involving the C 2 intersystem-crossing step. The C 2 minima on the seam of crossing (MSX) structures and the spin-orbit coupling between the doublet and quartet electronic states are rather close to those found in previous studies. Vibrational frequencies orthogonal to the normal of the seam which have been applied in a separate publication to calculate the rate of the CH(2∏) + N2 → HCN + N(4S) reaction with a newly proposed nonadiabatic transition-state theory for spin-forbidden reactions have been calculated at the MSX from first principles. Received: 23 June 1998 / Accepted: 21 September 1998 / Published online: 8 February 1999  相似文献   

4.
Ab initio electronic structure calculations using MP2 wavefunctions have been used to investigate a reaction path for the hydrosilation reaction catalyzed by divalent titanium [modeled by TiH2, TiCl2, and Ti(C5H5)2]. Optimized structures and energies are presented. All model reactions predict a barrierless reaction path compared to a barrier of 78 kcal/mol for the uncatalyzed reaction. Received: 11 August 1998 / Accepted: 3 September 1998 / Published online: 23 February 1999  相似文献   

5.
Ethylene insertion into the Sm–C bond of H2SiCp2SmCH3, a model reaction of an olefin polymerization propagation step, has been studied by ab initio molecular orbital methods. The small electronegativity of the Sm atom makes the Sm–C bond ionic, the methyl group being negatively charged by −0.75. The reaction passes through a loose ethylene complex with a binding energy of 15 kcal/mol and then a tight four-centered transition state with an agostic interaction between the Sm atom and one of the methyl CH bonds. A small activation energy of 14 kcal/mol is required to pass through this transition state, indicating that this is an easy reaction. Compared with the reactions with group 4 cationic silylene-bridged metallocenes the activation energy is higher and the reaction is less exothermic. The origin of these differences is discussed. The results of molecular mechanics calculations on regio- and stereoselectivities in the insertion reaction of propylene are also reported. Received: 13 July 1998 / Accepted: 28 August 1998 / Published online: 2 November 1998  相似文献   

6.
Ab initio molecular electronic structure methods have been used to study the relative stability of the planar inorganic ring (HAlNH)n (n = 2–4) during homodesmotic and monomer polymerization reactions. Optimized geometries, frequencies and energies through restricted Hartree-Fock/6-31G* are reported, and energies at the self-consistent field optimized geometries including M?ller-Plesset fourth perturbation theory with single, double and quadruple excitation (MP4SDQ) corrections are also reported for both reactions. Homodesmotic reactions with MP4SDQ −28.5 kcal/mol for (AlN)2, 1.9 kcal/mol for (AlN)3 and −0.97 kcal/mol for (AlN)4. On analysing a π-molecular orbitals diagram, only one, three and three strongly bonding π-molecular orbitals exist for the planar four-, six- and eight-membered AlN rings, respectively. Received: 9 March 1998 / Accepted: 19 March 1998 / Published online: 23 June 1998  相似文献   

7.
We have calculated the free energy differences between four conformers of the linear form of the opioid pentapeptide DPDPE in aqueous solution. The conformers are Cyc, representing the structure adopted by the linear peptide prior to disulfide bond formation, β C and β E , two slightly different β-turns previously identified in unconstrained molecular dynamics simulations, and Ext, an extended structure. Our simulations indicate that β E is the most stable of the studied conformers of linear DPDPE in aqueous solution, with β C , Cyc and Ext having free energies higher by 2.3, 6.3, and 28.2 kcal/mol, respectively. The free energy differences of 4.0 kcal/mol between β C and Cyc, and 6.3 kcal/mol between β E and Cyc, reflect the cost of pre-organizing the linear peptide into a conformation conducive for disulfide bond formation. Such a conformational change is a pre-requisite for the chemical reaction of S–S bond formation to proceed. The relatively low population of the cyclic-like structure agrees qualitatively with observed lower potency and different receptor specificity of the linear form relative to the cyclic peptide, and with previous unconstrained simulation results. Free energy component analysis indicates that the moderate stability difference of 4.0–6.3 kcal/mol between the β-turns and the cyclic-like structure results from cancellation of two large opposing effects. In accord with intuition, the relaxed β-turns have conformational strain 43–45 kcal/mol lower than the Cyc structure. However, the cyclic-like conformer interacts with water about 39 kcal/mol strongly than the open β-turns. Our simulations are the first application of the recently developed multidimensional conformational free energy thermodynamic integration (CFTI) protocol to a solvated system, with fast convergence of the free energy obtained by fixing all flexible dihedrals. Additionally, the availability of the CFTI multidimensional free energy gradient leads to a new decomposition scheme, giving the contribution of each fixed dihedral to the overall free energy change and providing additional insight into the microscopic mechanisms of the studied processes. Received: 20 April 1998 / Accepted: 9 September 1998 / Published online: 7 December 1998  相似文献   

8.
 An overlap criterion is defined that connects the identification of core orbitals in a molecular system, which can be problematic, to that in isolated atoms, which is well defined. This approach has been tested on a variety of troublesome systems that have been identified in the literature, including molecules containing third-row main-group elements, and is shown to remove errors of up to 100 kcal/mol arising from an inconsistent treatment of core orbitals at different locations on a potential-energy surface. For some systems and choices of core orbitals, errors as large as 19 kcal/mol can be introduced even when consistent sets of orbitals are frozen, and the new method is shown to identify these cases of substantial core–valence mixing. Finally, even when there is limited core–valence mixing, the frozen-core approximation can introduce errors of more than 5 kcal/mol, which is much larger than the presumed accuracy of models such as G2 and CBS-QB3. The source of these errors includes interatomic core–core and core–valence dispersion forces. Received: 31 August 2001 / Accepted: 11 October 2001 / Published online: 9 January 2002  相似文献   

9.
Contracted Gaussian-type function (CGTF) basis sets are reported for valence p orbitals of the six alkali and alkaline-earth atoms Li, Be, Na, Mg, K, and Ca for molecular applications. These sets are constructed by Roothaan–Hartree–Fock calculations for the ns → np excited states of atoms, in which both linear and nonlinear parameters of CGTFs are variationally optimized. The present CGTF sets reproduce well the numerical Hartree–Fock ns → np excitation energies: the largest error is 0.0009 hartrees for Li. New CGTFs are tested with diatomic Li2, Na2, K2, and MH molecules, where M = Li, Be, Na, Mg, K, and Ca, by self-consistent-field (SCF) and multiconfiguration SCF calculations. The resultant spectroscopic constants compare well with those of more elaborate calculations and are sufficiently close to experimental values, supporting the efficiency of the present set for the valence p orbitals. Received: 9 July 1998 / Accepted: 17 September 1998 / Published online: 1 February 1999  相似文献   

10.
B3LYP/6-31G* calculations on bis-periazulene (cyclohepta[def]-fluorene) predict a triplet ground state for this molecule. The singlet has an aromatic 14π-electron periphery but is 2 kcal/mol higher in energy. The results agree with earlier predictions by Heilbronner. Received: 19 August 1998 / Accepted: 6 October 1998 / Published online: 23 February 1999  相似文献   

11.
The electron affinities of the Sc and Ti atoms have been obtained by configuration interaction calculations. Energy convergence with respect to the systematic expansion of both the one-electron basis set and the configuration space was investigated for valence electrons, and the inclusion of correlation contributions from core electrons and relativistic effects gave the electron affinities of 0.181 eV and 0.163 eV for Sc and Ti, respectively. These are in excellent agreement with the observed values of 0.189 ± 0.020 eV and 0.080 eV. The same approach was applied for the first excited states and positive ions of both atoms. Excellent agreement with the experimental results was also obtained for these states. Received: 16 February 1998 / Accepted: 2 April 1998 / Published online: 23 June 1998  相似文献   

12.
13.
A theoretical study of the structure, charge distribution, rotational barrier and fundamental vibrations of anhydrous betaine (CH3)3NCH2COO (trimethylglycine) was carried out and compared with available experimental data. Calculations were carried out at HF, MP2 and B3LYP levels using a 6-31+G(d,p) basis set. The calculated rotational barrier of the betaine carboxylic group is 40.5 kJ/mol at the MP4(SDQ)/6-311G(d,p)//HF/6-31+G(d,p) level of theory. The rotation of the carboxylic group changes the molecule from a highly symmetric (C s ) conformation into a twisted conformation resulting in shortening of the molecule by about 50 pm. Natural population analysis (NPA) indicates intramolecular interaction between the carboxylic oxygen and the nearest methyl hydrogens resulting in internal hydrogen bonding. MP4(SDQ)/6-311G(d,p) single-point NPA calculations on a betaine monohydrate model taken from the X-ray geometry show an expected weakening in the internal hydrogen bond. Calculations explain why betaine preferentially crystallizes in high local C s symmetry. Received: 24 March 1998 / Accepted: 3 September 1998 / Published online: 7 December 1998  相似文献   

14.
Density functional theory transition structures were located for three concerted [6 + 4] cycloaddition reactions involving cis-hexatriene and butadiene, cyclopentadiene and cycloheptatriene, and cyclopentadiene and tropone. Geometries, energies, and entropies were computed at the Becke3LYP/6-31G* level. The activation energy of the concerted [6 + 4] cycloaddition of hexatriene and butadiene is 33.3 kcal/mol, about 8 kcal/mol above the activation energy of the butadiene plus ethylene [4 + 2] cycloaddition. The endo concerted [6 + 4] transition state is 1.1 kcal/mol higher than the exo. The [6 + 4] reaction of cyclopentadiene and cycloheptatriene has a barrier of 25.9 kcal/mol, while the cyclopentadiene–tropone barrier drops to 20.7 kcal/mol. Received: 3 December 1998 / Accepted: 18 February 1999 / Published online: 7 June 1999  相似文献   

15.
High-level ab initio calculations with large basis sets are reported for silene, H2C=SiH2. Correlated harmonic force fields are obtained from coupled cluster CCSD(T) calculations with the cc-pVQZ basis (cc-pVTZ for H) while the anharmonic force fields are computed at the MP2/TZ2Pf level. There is excellent agreement with the available experimental data, in particular the equilibrium geometry and the fundamental vibrational frequencies. Many other spectroscopic constants are predicted for the C 2 v isotopomers of silene. Received: 27 May 1998 / Accepted: 23 July 1998 / Published online: 9 October 1998  相似文献   

16.
The flexibility of the five-membered ring in tetrahydrofuran was investigated using quantum mechanical methods involving density functional, Hartree-Fock, and many-body perturbation theory (MP2, MP4) calculations. We found that motion along the pseudorotational path of tetrahydrofuran is nearly free. The 0.1 kcal/mol energy barrier for pseudorotation, calculated at the highest MP4(SDQ)/6-311++G(2d,p)//MP2/6-311++G(2d,p) level of theory, agrees well with the experimental value of 0.16±0.03 kcal/mol. Similar results were obtained with the S-VWN, B3-LYP and B-LYP density functional calculations using the 6-31G(d) set of atomic orbitals. Also the density functional dipole moments and geometries were in good agreement with both the MP2 and experimental benchmarks. However, all density functional methods that utilized the default integration grid in the Gaussian 94 program were found to provide false stationary points of the C 1 symmetry near the pseudorotational angle of 100°. These stationary points disappeared when a denser spherical-product grid was used. Overall, the hybrid B3-LYP functional was found to be the most promising quantum mechanical method for the modeling of biomolecules containing the furanose ring. Received: 17 June 1997 / Accepted: 20 November 1997  相似文献   

17.
We present correlated calculations of the indirect nuclear spin-spin coupling constants of HD, HF, H2O, CH4, C2H2, BH, AlH, CO and N2 at the level of the second-order polarization propagator approximation (SOPPA) and the second-order polarization propagator approximation with coupled-cluster singles and doubles amplitudes – SOPPA(CCSD). Attention is given to the effect of the so-called W 4 term, which has not been included in previous SOPPA spin-spin coupling constant studies of these molecules. Large sets of Gaussian basis functions, optimized for the calculation of indirect nuclear spin-spin coupling constants, were used instead of the in general rather small basis sets used in previous studies. We find that for nearly all couplings the SOPPA(CCSD) method performs better than SOPPA. Received: 6 July 1998 / Accepted: 8 September 1998 / Published online: 23 November 1998  相似文献   

18.
The mechanism of ethylene epoxidation on Ag surfaces has been investigated using the density functional method and Ag n clusters (n = 3 to 10) modeling the Ag(111) surface. The adsorption energy of O2 to the Ag clusters was strongly dependent on the HOMO level of the cluster, and the clusters with higher HOMO levels afforded larger O2 adsorption energies. The energetics was investigated for both the molecular and atomic oxygen epoxidation mechanisms. For the atomic oxygen mechanism, epoxidation was found to proceed without an activation energy, whereas a small amount of activation energy (about 5 kcal/mol) was calculated for the molecular oxygen mechanism. Received: 2 July 1998 / Accepted: 9 September 1998 / Published online: 8 February 1999  相似文献   

19.
The effect of the inclusion of the exact exchange into self-interaction corrected generalized gradient approximation density functional theory (GGA-DFT) for the simplest hydrogen abstraction reaction, H + H2 → H3 → H2 + H, is presented using a triple-zeta augmented 6-311++G(d,3pd) basis set. The introduction of the self-interaction correction has a considerably larger effect on molecular geometry and vibrational frequencies than the inclusion of the exact exchange. We investigate the influence of the self-interaction error on the shape of the potential energy surface around the transition state of the hydrogen abstraction reaction. The decomposition of the self-interaction error into correlation and exchange parts shows that the exchange self-interaction error is the main component of the energy barrier error. The best agreements with the experimental barrier height were achieved by self-interaction corrected B3LYP, B-LYP and B3PW functionals with errors of 1.5, 2.9 and 3.0 kcal/mol, respectively. Received: 13 August 1997 / Accepted: 14 November 1997  相似文献   

20.
Hybrid quantum mechanical/molecular mechanical electronic structure calculations reveal the transition state for C–H bond cleavage in [(LCu)2 (μ-O)2]2+ (L=1,4,7-tribenzyl-1,4,7-triazacyclononane) to be consistent with a hydrogen-atom-transfer mechanism from carbon to oxygen. At the MPW1K/double-zeta effective core potential(+)|univeral force field level, 0 K activation enthalpies for the parent, p-CF3, and p-OH substituted benzyl systems are predicted to be 8.8, 9.5, and 7.8 kcal/mol. Using a one-dimensional Eckart potential to estimate quantum effects on the reaction coordinate, reaction in the unsubstituted system is predicted to proceed with a primary kinetic isotope effect of 22 at 233 K. Structural parameters associated with the hydrogen-atom transfer are consistent with the Hammond postulate. Received: 10 October 2000 / Accepted: 3 November 2000 / Published online: 3 April 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号