首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bromate is a well known by-product produced by the ozonisation of drinking water; the allowed concentration for human consumption has to be regulated to the low microg l(-1) range. A direct injection, ion chromatographic method was developed using a tetraborate eluent with serially connected conductivity and spectrophotometric detection. Bromate was detected after post-column reaction with fuchsin at 520 nm. Sample capacity was investigated by injecting large volumes (up to 6 ml) using a high total hardness and chloride tap water. Linear correlation of bromate response with volumes from 1 ml to 6 ml was demonstrated, the main limitation being the overlapping of the chloride peak with bromate. Up to 1.5 ml sample can be injected without any pre-treatment. With more than 1.5 ml injection volume, a sample pre-treatment with a cartridge in Ag and H form, followed by a 10 min degassing in an ultrasonic bath, was needed. This method was validated by analysing secondary reference materials and real samples from a drinking water treatment plant. The method was linear from the limit of quantification to 20 microg l(-1). Reproducibilities in tap water were 18% (5 microg l(-1), n=12) and 21% (1 microg l(-1), n=4) respectively for 1.5 and 6 ml injection volumes with conductivity detection, and 17% at 0.5 microg l(-1) (n=9) with spectrophotometric detection. Calculated detection limits were 0.5 microg l(-1) (6 ml) ahd 2 microg l(-1) (1.5 ml) for conductivity detection and 0.3 microg l(-1) (1.5 ml) for spectrophotometric detection.  相似文献   

2.
Kosaka K  Asami M  Takei K  Akiba M 《Analytical sciences》2011,27(11):1091-1095
An analytical method for determining bromate in drinking water was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The (18)O-enriched bromate was used as an internal standard. The limit of quantification (LOQ) of bromate was 0.2 μg/L. The peak of bromate was separated from those of coexisting ions (i.e., chloride, nitrate and sulfate). The relative and absolute recoveries of bromate in two drinking water samples and in a synthesized ion solution (100 mg/L chloride, 10 mg N/L nitrate, and 100 mg/L sulfate) were 99-105 and 94-105%, respectively. Bromate concentrations in 11 drinking water samples determined by LC-MS/MS were <0.2-2.3 μg/L. The results of the present study indicated that the proposed method was suitable for determining bromate concentrations in drinking water without sample pretreatment.  相似文献   

3.
抑制型电导检测离子色谱法测定饮用水中的痕量溴酸盐   总被引:4,自引:1,他引:3  
应波  李淑敏  岳银玲  鄂学礼 《色谱》2006,24(3):302-304
建立一种直接进样测定饮用水中痕量溴酸盐的电导检测离子色谱法。选用Metrosep A Supp 5阴离子交换分离柱,碳酸盐淋洗液。抑制型电导检测采用化学抑制器和CO2抑制器顺序双抑制系统。实验结果显示,溴酸根阴离子与常见共存阴离子完全分离,溴酸盐含量在5~100 μg/L范围内具有良好的线性(r=0.9999),精密度高(相对标准偏差(RSD)<4%),方法的检出限为0.50 μg/L,样品加标平均回收率为96.1%~107%。该方法操作简单,分离效果好,可与常见阴离子实现同时分析,灵敏度高,重现性好,可作为饮用水中溴酸盐的标准测定方法。  相似文献   

4.
Bromate is a byproduct formed as a result of disinfection of bromide-containing source water with ozone or hypochlorite. The International Agency for Research on Cancer has recognized bromate as a possible human carcinogen, thus it is essential to determine in drinking water. Present work highlights a development of sensitive and fast analytical method for bromate determination in drinking water by using ultraperformance liquid chromatography-tandem mass spectrometry. The quality parameters of the developed method were established, obtaining very low limit of detection (0.01 ng/mL), repeatability and reproducibility have been found to be less than 3% in terms of relative standard deviation when analyzing a bromate standard at 0.05 μg/mL with 0.4 min analysis time. Developed method was applied for the analysis of metropolitan and bottled water from Saudi Arabia; 22 samples have been analyzed. Bromate was detected in the metropolitan water samples (from desalinization source) at concentrations ranging between 3.43 and 75.04 ng/mL and in the bottled water samples at concentrations ranging between 2.07 and 21.90 ng/mL. Moreover, in comparison to established analytical methods such as liquid chromatography-tandem mass spectrometry, the proposed method was found to be very sensitive, selective and rapid for the routine analysis of bromate at low level in drinking water.  相似文献   

5.
Tu C  Zhu L  Ang CH  Lee HK 《Electrophoresis》2003,24(12-13):2188-2192
Large-volume sample stacking (LVSS) is an effective on-capillary sample concentration method in capillary zone electrophoresis, which can be applied to the sample in a low-conductivity matrix. NaOH solution is commonly used to back-extract acidic compounds from organic solvent in sample pretreatment. The effect of NaOH as sample matrix on LVSS of haloacetic acids was investigated in this study. It was found that the presence of NaOH in sample did not compromise, but rather help the sample stacking performance if a low pH background electrolyte (BGE) was used. The sensitivity enhancement factor was higher than the case when sample was dissolved in pure water or diluted BGE. Compared with conventional injection (0.4% capillary volume), 97-120-fold sensitivity enhancement in terms of peak height was obtained without deterioration of separation with an injection amount equal to 20% of the capillary volume. This method was applied to determine haloacetic acids in tap water by combination with liquid-liquid extraction and back-extraction into NaOH solution. Limits of detection at sub-ppb levels were obtained for real samples with direct UV detection.  相似文献   

6.
A method for the potentiometric determination of bromate by circulatory flow injection analysis (CFIA) is described. The procedure involves the use of an Fe(III)-Fe(II) potential buffer solution, which is recycled via a reservoir. The analytical method is based on a linear relationship between the concentration of bromate and a very transient potential change in the electrode potential due to the generation of intermediate bromine during the reaction of bromate with the Fe(III)-Fe(II) potential buffer solution, which also contains NaBr, (NH4)6Mo7O24 and H2SO4. An aliquot (5 microl) of a bromate sample solution was injected into the stream of the potential buffer solution, 100 ml of which was circulated at a flow rate of 1 ml/min; the potential buffer solution stream was then returned to the reservoir after passing through a flow-through redox electrode detector. A potential change due to the reaction of the injected sample with the potential buffer in a reaction coil was measured with the detector in the form of a peak signal. The effects of the bromide, sulfuric acid and Fe(III)-Fe(II) concentrations in the potential buffer, and length of the reaction coil on the peak heights were examined in order to optimize the proposed CFIA method. The analytical sensitivities to bromate were 5.6 mV/microM for 1 x 10(-2) M and 30.9 mV/microM for 1 x 10(-3) M in the concentration of Fe(III)-Fe(II) in a potential buffer solution containing 0.35 M NaBr, 0.2% (NH4)6Mo7O24 and 1 M H2SO4. The detection limit of bromate obtained by a 1 x 10(-3) M Fe(III)-Fe(II) potential buffer solution was 0.02 microM (2.5 ppb). The numbers of repetitive determinations in which the relative sensitivities within 5% were regarded as being tolerated were ca. 4000 and 2000 for the use of only 100 ml of 1 x 10(-2) M and 1 x 10(-3) M Fe(III)-Fe(II) potential buffer solution, respectively.  相似文献   

7.
This study describes the simultaneous determination of phosphonate, phosphate, and diphosphate by CE with direct UV detection, based on in-capillary complexation with Mo(VI). When a mixture of phosphonate, phosphate, and diphosphate was injected into a capillary containing 3.0 mM Mo(VI), 0.05 M malonate buffer (pH 3.0) and 45% v/v CH3CN, three well-defined peaks, due to the migration of the corresponding polyoxomolybdate anions, were separated. The respective calibration graphs were linear in the concentration range of 2 x 10(-6)-2 x 10(-4) M for phosphonate, 1 x 10(-6)-5 x 10(-5) M for phosphate, and 1 x 10(-6)-2 x 10(-4) M for diphosphate; the correlation coefficients were better than 0.9990. The present CE method is successfully applied to the simultaneous determination of phosphonate, phosphate, and diphosphate in tap water.  相似文献   

8.
Capillary electrophoresis coupled with electrochemical detection (CE-EC) for determination of antioxidants, propyl gallate (PG) and tert-butylhydroquinone (TBHQ), in cosmetic samples was proposed in this work. A porous etched joint was used to isolate the electrochemical detection from the electrophoretic high voltage. Compared with the 25 microm i.d. capillary without a decoupler in a CE-EC system, a 75 microm i.d. capillary applied in the present system gave an improvement in both sample injection and sensitivity. Moreover, the carbon fiber working electrode could be directly in touch with the end of separation capillary due to the elimination of the effect of separation voltage on the EC detection, so the alignment of working electrode and capillary became easy and the dead volume was also decreased. Baseline separation of the two antioxidants was achieved by CE in a 50 cm long x 75 microm i.d. capillary at 20 kV using 5.0 mmol L(-1) phosphate buffer (pH 8.00). 0.7 V (versus Ag/AgCl) was applied to the carbon fiber electrode for electrochemical detection. Under the optimal condition, the precisions (RSD, n=4) of peak height and migration time of PG and TBHQ were 2.39-3.59% and 0.34-0.44%, respectively. The detection limits of PG and TBHQ were 2.51x10(-6) and 4.88 x 10(-6) mol L(-1) for standard solution and 0.0751 and 0.0328 mg g(-1) for the real cosmetic samples with consumption of 0.3g sample. Analysis of TBHQ and PG in cosmetics samples was also achieved with the present system and the spiked recoveries of two analytes in cosmetics samples were in the range of 93.6-98.8%.  相似文献   

9.
A novel capillary electrophoretic (CE) method, based on in-capillary complexation with [PW(11)O(39)](7-), was developed for the determination of cadmium(II) in natural water samples. When a sample solution is injected into a capillary containing 0.20 mM [PW(11)O(39)](7-) and 0.10 M malonate buffer (pH 3.0), the ternary Keggin-type complex, [P(Cd(II)W(11))O(39)](5-), which possesses high molar absorbtivities in the UV region, is formed in the capillary, and its migration toward the anode gives a well-defined migration peak in the electropherogram. An advantage of this method is that many divalent metal ions do not interfere. The proposed method was successfully applied to the determination of Cd(II) in environmental samples. The detection limits were 1 x 10(-7) and 5 x 10(-7) M for river-water and seawater samples, respectively (signal-to-noise ratio = 3).  相似文献   

10.
A new trimethylamine amination polychloromethyl styrene nanolatex (TMAPL) and TMAPL coated capillary column (ccc‐TMAPL) were successfully prepared. The TMAPL coating was characterized with reversed steady EOF values of ca. ?16.8 × 10?5 cm2 V?1 s?1. It was applied to establish open‐tubular (OT) CEC and field‐amplified sample stacking (FASS) OT‐CEC methods for the determination of bromate in tap water. Compared to OT‐CEC, the LOD with FASS‐OT‐CEC was improved from 80 to 8 ng/mL. The developed FASS‐OT‐CEC method was practically used for the analysis of bromate in tap water samples with recoveries ranging from 93.6 to 103.5%.  相似文献   

11.
The use of capillary zone electrophoresis (CZE) on-line coupled with isotachophoresis (ITP) sample pretreatment (ITP-CZE) on a poly(methylmethacrylate) chip, provided with two separation channels in the column-coupling (CC) arrangement and on-column conductivity detection sensors, to the determination of bromate in drinking water was investigated. Hydrodynamic and electroosmotic flows of the solution in the separation compartment of the chip were suppressed and electrophoresis was a dominant transport process in the ITP-CZE separations. A high sample load capacity, linked with the use of ITP in this combination, made possible loading of the samples by a 9.2 microL sample injection channel of the chip. In addition, bromate was concentrated by a factor of 10(3) or more in the ITP stage of the separation and, therefore, its transfer to the CZE stage characterized negligible injection dispersion. This, along with a favorable electric conductivity of the carrier electrolyte solution, contributed to a 20 nmol/L (2.5 ppb) limit of detection for bromate in the CZE stage. Sample cleanup, integrated into the ITP stage, effectively complemented such a detection sensitivity and bromate could be quantified in drinking water matrices when its concentration was 80 nmol/L (10 ppb) or slightly less while the concentrations of anionic macroconstituent (chloride, sulfate, nitrate) in the loaded sample corresponding to a 2 mmol/L (70 ppm) concentration of chloride were still tolerable. The samples containing macroconstituents at higher concentrations required appropriate dilutions and, consequently, bromate in these samples could be directly determined only at proportionally higher concentrations.  相似文献   

12.
Hsieh MM  Chang HT 《Electrophoresis》2005,26(1):187-195
On-line concentration and separation of biologically active amines and acids by capillary electrophoresis (CE) in conjunction with laser-induced fluorescence using an Nd:YAG laser at 266 nm under discontinuous conditions is presented. The suitable conditions for simultaneous analysis of amines and acids were: samples were prepared in a solution (pH* 3.1) consisting of 10 mM citric acid, 89% acetonitrile (ACN), and water; a capillary was filled with 1.5 M Tris-borate (TB) buffer (pH 10.0); and the anodic vial contained PTG10 buffer (pH* 9.0) that consists of 50 mM propanoic acid, Tris, 10% glycerol, and water. After injecting a large-volume sample, amines and acids were separately stacked at the front (cathodic side) and back (anodic side) of the acidic sample zone, mainly because of changes in their electrophoretic mobilities as a result of changes in pH, viscosity, and electric field when high voltage was applied. When the sample was injected at 15 kV for 360 s, the concentration limits of detection (LODs) for 5-hydroxytryptamine (5-HT) and 5-hydroxyindole-3-acetic acid (5-HIAA) were 0.27 and 0.31 nM, respectively, which are about 400- and 800-fold sensitivity improvements when compared to those injected at 1 kV for 10 s. For the analysis of amines, samples were prepared in 100 mM citric acid (pH* 1.8) containing 89% ACN and both the capillary and anodic vial were filled with 400 mM PTG20 (propanoic acid, Tris, 20% glycerol, and water) at pH* 4.5. Using a large injection volume (15 kV for 360 s), we achieved concentration LODs of 17 pM and 0.3 nM for tryptamine and epinephrine, which are about 5200- and 14,000-fold sensitivity improvements, respectively, in comparison with those injected at 1 kV for 10 s. The features of simplicity (no sample pretreatment), rapidity (12 min), and sensitivity for identification of amines and acids of interest in urine samples show diagnostic potential of the two approaches developed in this study.  相似文献   

13.
The use of a poly(methylmethacrylate) chip, provided with two separation channels in the column-coupling (CC) arrangement and on-column conductivity detection sensors, to electrophoretic separations of a group of inorganic anions (chloride, nitrate, sulfate, nitrite, fluoride and phosphate) that need to be monitored in various environmental matrices was studied. The electrophoretic methods employed in this study included isotachophoresis (ITP) and capillary zone electrophoresis (CZE) with on-line coupled ITP sample pretreatment (ITP-CZE). Hydrodynamic and electroosmotic flows of the solution in the separation compartment of the CC chip were suppressed and electrophoresis was a dominant transport process in the separations performed by these methods. ITP separations on the chip provided rapid resolutions of sub-nmol amounts of the complete group of the studied anions and made possible rapid separations and reproducible quantitations of macroconstituents currently present in water samples (chloride, nitrate and sulfate). However, concentration limits of detection attainable under the employed ITP separating conditions (2-3 x 10(-5) mol/l) were not sufficient for the detection of typical anionic microconstituents in water samples (nitrite, fluoride and phosphate). On the other hand, these anions could be detected at 5-7 x 10(-7) mol/l concentrations by the conductivity detector in the CZE stage of the ITP-CZE combination on the CC chip. A sample clean-up performed in the ITP stage of the combination effectively complemented such a detection sensitivity and nitrite, fluoride and phosphate could be reproducibly quantified also in samples containing the macroconstituents at 10(4) higher concentrations. ITP-CZE analyses of tap, mineral and river water samples showed that the CC chip offers means for rapid and reproducible procedures to the determination of these anions in water (4-6 min analysis times under our working conditions). Here, the ITP sample pretreatment concentrated the analytes and removed nanomol amounts of the macroconstituents from the separation compartment of the chip within 3-4 min. Both the ITP and ITP-CZE procedures required no or only minimum manipulations with water samples before their analyses on the chip. For example, tap water samples were analyzed directly while a short degassing of mineral water (to prevent bubble formation during the separation) and filtration of river water samples (to remove particulates and colloids) were the only operations needed in this respect.  相似文献   

14.
E Morcos  N P Wiklund 《Electrophoresis》2001,22(13):2763-2768
Nitrite and nitrate have been widely used as markers for nitric oxide (NO) formation in vivo and represent the major NO oxidation products in biological fluids. In the present study, the use of capillary electrophoresis (CE) in the measurement of nitrite and nitrate in human urine is described. Urine samples were electrophoresed in an extended light path fused-silica capillary (104 cm; 75 microm ID) at an applied negative potential of 30 kV, and UV detection at 214 nm. Using electrokinetic sample injection (-6 kV x 20 s), we found that urine concentration, pH, sodium and chloride interfered with nitrite and nitrate detection. The detection of nitrite and nitrate was decreased when hydrodynamic sample injection was used (30 mbar x 60 s). However, basal levels of urinary nitrite (0.25 +/- 0.05 microM) and nitrate (591 +/- 115 microM) were detected and no interference by variations in urine concentration and pH was noted when hydrodynamic sample injection was used. Thus, hydrodynamic sample injection is convenient for the measurement of urinary nitrite and nitrate and avoids the effect of variations in urine matrices and pH on nitrite and nitrate detection.  相似文献   

15.
Based on the formation of a Keggin-type [PMo12O40]3- complex, a sensitive capillary electrophoresis (CE) method was developed for the determination of P(V) with direct UV detection at 220 nm. A mixture of alpha- and beta-Keggin-type [PMo12O40]3- complexes was readily formed in a sample solution consisting of a trace amount of P(V), 2.5 mM Mo(VI), 0.050 M p-C6H3(CH3)-2-SO3H (XSA), and 60% v/v CH3CN. When a 0.05 M HCl and 60% v/v CH3CN solution was used as a migration electrolyte, the Keggin complexes exhibited a sharp and well-defined peak in the electropherogram. The peak area was linearly dependent on the P(V) concentration in the range of 5 x 10(-7)-5 x 10(-5) M; a detection limit of 1 x 10(-7) M was achieved. In comparison with indirect UV detection, the direct UV detection is about ten times more sensitive, because the Keggin complexes possess high molar absorptivities. The developed CE method was applied to the determination of P(V) in river water, and the results were in good agreement with those obtained by ion chromatography (IC) and colorimetry (COL) based on the formation of mixed-valence heteropoly blue species.  相似文献   

16.
In the present study, curcumin from Chinese herbal medicine turmeric was determined by capillary electrophoresis with amperometric detection (CE-AD) pretreated by a self-designed, simple, inexpensive solid-phase extraction (SPE) cartridge based on the material of tributyl phosphate resin. An average concentration factor of 9 with the recovery of > 80% was achieved when applied to the analysis of curcumin in extracts of tumeric. Under the optimized CE-AD conditions: a running buffer composed of 15 mM phosphate buffer at a pH 9.7, separation voltage at 16 kV, injection for 6 s at 9 kV and detection at 1.20 V, CE-AD with SPE exhibited low detection limit as 3 x 10(-8) mol/l (S/N = 3), high efficiency of 1.0 x 10(5) N, linear range of 7 x 10(-4) -3 x 10(-6) mol/l (r = 0.9986) for curcumin extracted from light petroleum. The method developed resulted in enhancement of the detection sensitivity and reduction of interference from sample matrix in complicated samples and exhibited the potential application for routine analysis, especially in food, because a relatively complete process of sample treatment and analysis was described.  相似文献   

17.
Qin W  Li SF 《Electrophoresis》2003,24(12-13):2174-2179
This report describes separation and detection of chlorophenoxy acid herbicides spiked in drinking water by the technique combining solid-phase extraction, field-amplified sample stacking, capillary electrophoresis, and potential gradient detection. The herbicide solution (400 mL) was concentrated to 0.1 mL by the solid-phase extraction procedure. The buffer containing 3 mM ammonia and 0.3 mM hydroxypropyl-beta-cyclodextrin was adjusted to pH 9.0 with ammonia. The sample solution was injected into the capillary to 30% of the whole length, and -9 kV and 9 kV were employed for field-amplified sample stacking and separation, respectively. The herbicides were baseline separated and the detection limits with the above combined techniques were in the range of 1-4 x 10(-2) ng/mL.  相似文献   

18.
This study reports a sensitive kinetic spectrophotometric method for the determination of trace amounts of thiocyanate. In acidic solution, Methylene Blue (MB) is oxidized by bromate to form a colorless compound. The reaction is accelerated by trace amounts of thiocyanate and can be followed by measuring the absorbance at 664 nm. The absorbance of the reaction decreased with an increase in the reaction time. Under the optimum experimental conditions (0.56 M of sulfuric acid, 3.9 x 10(-5) M of MB, 3.0 x 10(-3) M of bromate, 180 s, 25 degrees C), thiocyanate can be determined in the range 5.0 - 180 ng/ml. The relative standard deviations (n = 8) are 2.81 and 1.43% for 10.0 and 150 ng/ml thiocyanate, respectively. The detection limit of this method is (3sigma) 3.8 ng/ml. This method was successfully applied to the determination of thiocyanate in real samples.  相似文献   

19.
A new sensitive and simple method has been developed for the determination of thiocyanate in human serum, urine and saliva. The determinations were performed in a fused-silica capillary [64.5 cm (56 cm effective length) x 75 microm] using 0.1 M beta-alanine-HCl (pH 3.50) as a background electrolyte, separation voltage 18 kV (negative polarity), temperature of capillary 25 degrees C and direct detection at 200 nm. Serum samples were 10-times diluted with deionised water and deproteinised with acetonitrile in the ratio 1:2. Urine and saliva samples need only 20-fold dilution with deionised water. The proposed method was successfully applied to the determination of thiocyanate in various human serum, saliva and urine samples.  相似文献   

20.
Yin J  Guo W  Du Y  Wang E 《Electrophoresis》2006,27(23):4836-4841
A facile CE method coupled with tris(2,2'-bipyridyl) ruthenium(II)-based electrochemiluminescence [Ru(bpy)(3) (2+)] detection was developed for simultaneous determination of Aconitum alkaloids, i.e., hypaconitine (HA), aconitine (AC), and mesaconitine (MA) in baseline separation. The optimal separation of these Aconitum alkaloids was achieved in a fused-silica capillary column (50 cm x 25 microm id) with 30 mM phosphate solution (pH 8.40) as running buffer at 12 kV applied voltage. The three alkaloids can be determined within 10 min by a single run. The calibration curves showed a linear range from 2.0 x 10(-7) to 2.0 x 10(-5) M for HA, 3.4 x 10(-7) to 1.7 x 10(-5) M for AC, and 3.8 x 10(-7) to 1.9 x 10(-5) M for MA. The RSDs for all analytes were below 3.01%. Good linear relationships were found with correlation coefficients for all analytes exceeding 0.993. The detection limits were 2.0 x 10(-8) M for HA, 1.7 x 10(-7) M for AC, and 1.9 x 10(-7) M for MA under optimal conditions. This method was successfully applied to determine the three alkaloids in Aconitum plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号