首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many researches are devoted to the study of silicon dioxide, a material of great interest for its use in the micro-electronics industry. This paper aims to compare the behavior of electrons and positrons when impinging on silicon dioxide targets in order to investigate the differences and the similarities. In particular, the inelastic mean free path, the stopping power, the differential elastic scattering cross-section and the total and transport elastic scattering cross-section of electrons and positrons penetrating in silicon dioxide targets are compared in order to better understand their influence in determining the implantation profiles shapes, the mean range of penetration, the maximum range of penetration and the backscattering coefficient as a function of the primary energy of the incident particles.  相似文献   

2.
Backscattering (Bcs) coefficients for low-energy positrons (∼100 eV) from elemental solids have been simulated using an analytic approach. The model is based on the use of the transport cross-sections (TCSs) and the stopping power calculated from partial wave methods and the best-fit stopping power data of Ashley, respectively. The new result is an extension of recent calculations in the medium energy range. Comparisons, when possible, with experimental and Monte-Carlo (MC) simulation data have been made.  相似文献   

3.
We report measurements of the electron and positron work functions of submonolayer contaminated single crystal surfaces of Cr(100) in ultra high vacuum. The positron work function ø+ is obtained by measuring the spectrum of slow positrons reemitted by the Cr(100) surface when it is bombarded with keV energy positrons. The electron work function ø- is measured relative to Al(100) by comparing the target biases at which the slowest emitted positrons are recollected by the target. We obtain ø+ = ?1.76(10) eV and ø- = 4.46(6) eV for our Cr(100) surface using the value ø- = 4.41(3) eV for Al(100) reported by Grepstad, Gartland and Slagsvold. The ø+ value is in agreement with the ?2.2 eV calculated by Nieminen and Hodges. The positronium work function for Cr implied by these results is ?4.10(10) eV; the positronium negative ion (Ps-) work function for this surface is calculated to be + 0.37(7) eV. A search for Ps- showed that at a 90% confidence level less than one in 103 thermalized positrons reaching the Cr surface are emitted as Ps-. The slow positron emission spectrum was observed not to change over the 70–300 K range in contrast to recent theoretical predictions.  相似文献   

4.
微通道板离子壁垒膜及其对入射离子的阻止作用   总被引:1,自引:0,他引:1       下载免费PDF全文
给出了三代微光像管中微通道板离子壁垒膜对入射正离子阻止作用的描述,引进了核阻止本领、电子阻止本领和平均射程的概念。结合Tomas-Fermi屏蔽势进行了分析讨论和Monte-Carlo模拟计算,给出Al2O3和SiO2薄膜对不同能量垂直入射时的核、电子阻止的定量结果。得出了Al2O3薄膜阻止本领比SiO2阻止本领高的结论。证实了选用Al2O3离子壁垒膜的科学性和可行性。  相似文献   

5.
An injector of monochromatic positrons for the low-energy positron accumulator (LEPTA) is being tested at the Joint Institute for Nuclear Research. The source of positrons is the radioactive source 22Na. At the output of the source, positrons are slowed down in a solid target. Frozen neon is used as a moderator. For this purpose, a system of cryocooling of the source and the neon supply line have been assembled. A method of detection of slow positrons has been developed and tuned. The first experiments with the frozen moderator have been performed. A continuous beam of slow positrons with an average energy of 1.2 eV and spectrum width of 1 eV has been obtained.  相似文献   

6.
7.
An “optical-data model” is employed to evaluate energy loss per unit pathlength and inelastic mean free path for low-energy electrons and positrons ( 10 keV) from optical data on the medium of interest. Exchange between the incident electron and electrons in the medium is included. Results from the optical-data model are given for Al, Au, Ag, Cu, C, and polyethylene, and some comparisons are made with previous theoretical results.  相似文献   

8.
Abstract

The energy dependence of low dose damage production in commercial and high purity polycrystalline tungsten wires was studied near 350 K with 1.6 to 2.4 MeV electrons. From resistivity measurements at 291 K the threshold energy for the onset of observable damage was determined as 50 × 2 eV. An ‘effective’ threshold of 52 ±2 eV was also determined by directly fitting the energy dependence of the damage rates to theoretical displacement cross sections calculated from step-function displacement probabilities. A decrease of two orders of magnitude in impurity content reduced damage rates by about a factor of two but did not affect threshold. These results combined with current defect recovery models for tungsten, low temperature threshold data, and computer-calculated bcc damage theory suggest: (1) Observed damage consisted of equal concentrations of vacancies and impurity-trapped Stage I free interstitials. (2) Across Stage II (100 K to 600 K) onset threshold should be within 50 ±2 eV. (3) Minimum recoil energy required for free interstitial production near 0 K is 53 ± 5 eV. (4) Threshold has little dependence on crystal direction. An empirical method is presented for predicting threshold energies in the bcc transition metals by assuming the directional dependence of threshold is directly proportional to that of Young's modulus. By the use of one universal proportionality constant (1.2 × 10?11 eV.cm2/dyne), thresholds for a number of metals and directions are calculated and shown to have significantly better agreement with experiment than the best available theoretical estimates.  相似文献   

9.
The mean free path of a nucleon in a nuclear Fermi gas at finite temperature is calculated by utilizing the free nucleon-nucleon cross section modified to suppress final states excluded by the Pauli principle. The results agree with an earlier zero-temperature calculation but yield substantially smaller values than a previous finite-temperature analysis.The Fermi gas mean free paths are some two to four times shorter than those implied by phenomenological imaginary optical potentials, suggesting that the present Fermi gas model fails to adequately describe the physical processes determining the mean free path. Even so, the present results, taken as lower bounds on the mean free path, require temperatures of some 4.5 MeV before the mean free path of bound nucleons becomes as short as the nuclear diameter. It follows that very high excitation energies are prerequisite to any short mean free path assumption in nuclear heavy-ion collisions.  相似文献   

10.
Two important parameters in semi-empirical theories of elemental sensitivity in Auger electron spectroscopy are the electron-impact ionization cross-section and the electron mean free path. This paper compares the Gryziński, Lotz, and Casnati et al. theories of ionization cross-section, as well as the Seah and Bench empirical theory and the Szajman et al. dielectric theory of electron mean free path, by matching the elemental sensitivity factors calculated with these parameters to experimental AES elemental sensitivities. Electron mean free paths, calculated with the dielectric theory, are presented, for the Auger electron energies of interest, for most elements in the periodic table. The best match between the semi-empirical and experimental sensitivities (with a standard deviation of 56%) was for the combination of the Casnati et al. ionization cross-section and the dielectric theory electron mean free path.  相似文献   

11.
Two energy loss spectra of 1000 and 3000 eV electrons reflected from a Cu surface are analysed to give the normalized distribution of energy losses in a single surface and volume inelastic scattering process. These single scattering loss distributions are subsequently fitted to theoretical expressions for the differential inverse inelastic mean free path (DIIMFP) and differential surface excitation probability (DSEP) providing the real and imaginary part of the dielectric function in terms of a set of Drude-Lorentz oscillators. The optical constants obtained in this way are subjected to several sum rule checks and compared with other experimental data and with density-functional-theory (DFT) calculations. The present optical data agree excellently with the DFT-results, while the earlier optical data deviate significantly from these two data sets for energies below 30 eV. The mean free path for inelastic electron scattering for energies below 2000 eV is derived from the dielectric data and is found to agree satisfactorily with values reported earlier.  相似文献   

12.
The differential cross-sections of atomic hydrogen for elastic scattering of electrons and positrons have been rederived with the help of a method using a single parameter-dependent unitary shift operator for the calculation of the direct contribution. When the parameter approaches zerc the new method leads to the well-known conventional Glauber results. The numerical calculations include polarization effects and the exchange corrections obtained according to alternative approximation methods. Results calculated with Franco’s exchange show a definite improvement over the earlier results for medium energy electrons at large angles of scattering. Total elastic cross-sections have been calculated for 50 and 100eV electrons and positrons.  相似文献   

13.
Chemical modification along ion tracks in PADC films has been studied by means of FT-IR spectrometry, which was exposed to proton and heavy ions of He, C, Ne, Ar, Fe, Kr and Xe with energies around the Bragg peaks. This study covers a wide region of the stopping power ranging from 10 to 10,000 keV/μm. Removal cross sections for the loss of ether and carbonate ester bonds are assessed for each ion, as a function of the stopping power. Chemical damage parameters like the damage density, the effective track core radius and the radiation chemical yields, G values (scissions/100 eV), for each bond are also derived. We have found anomalous dependence of these parameters on the stopping power. The G value for the loss of carbonate ester bond decreased from 20 for proton down to 5 for C and Ne ions, and then increased with atomic number of heavy ions up to 8 for Xe ion. Radial dose distribution for each ion has been also calculated. Results are discussed from the viewpoint of polymeric structure of PADC that consists of two parts with different radio-sensitivities.  相似文献   

14.
An analytical approach for simultaneously determining an inelastic mean free path (IMFP), a surface excitation parameter (SEP) and a differential SEP (DSEP) with absolute units was applied for the analysis of absolutely measured reflection electron energy loss spectra for Au. The IMFP, SEP and DSEP in Au for 300-3000 eV electrons are successfully obtained. The obtained DSEPs show a reasonable agreement with those theoretically calculated. The present SEPs were compared with those calculated by several empirical equations, revealing that the present SEPs are close to those calculated using the Oswald's equation. The IMFPs for Au determined by the present analysis were compared with those calculated by the TPP-2M predictive equation, revealing that the present IMFPs are in fairly good agreement with those calculated by the TPP-2M equation. The results confirmed that the present approach is effective for experimentally determining the SEP, DSEP, and IMFP for electrons in solids.  相似文献   

15.
The photoemission effect in GaAs is calculated for photon energies up to 12 eV using a direct transition model and pseudopotential energy bands. The effect of the pair scattering in the energy distribution curves is included using a mean free path approximation and a first order perturbation treatment for the coulombic interaction producing the scattering. The absolute value of the yield function is well reproduced. A detailed discussion of the contribution from scattered and unscattered electrons to the energy distribution curves is performed and their interpretation in terms of the details of the energy bands is given.  相似文献   

16.
Reflection electron energy loss spectra of aluminium were studied for primary energies in the 500–2000 eV and loss energies in the 0–80 eV range. The absolute intensity observed could be well explained by using an electron-gas model for the inelastic electron scattering cross section and by assuming that the distribution of the path lengths travelled in the solid is exponentially decreasing. The attenuation length in this distribution is found to be on the order of the transport mean free path for elastic electron scattering.  相似文献   

17.
The intensity profile for the elastic specular reflection of 5–100 eV positrons from a LiF(100) surface (ang1e of incidence 45°) has been measured using a simple time-of-flight spectrometer. The profile exhibits strong maxima below 25 eV and a smaller peak at 57 eV. Positron energy loss spectra have also been measured for a range of incident energies by retarding field analysis of the scattered beam. The mean energy loss appears to increase with increasing incident beam energy. Both the elastic and inelastic results are compared with similar data for slow-electron scattering obtained with the same apparatus.  相似文献   

18.
The reflection of protons from a partially cesiated tungsten surface is studied in the energy domain between 100 and 2000 eV and in the angular domain between 75° and 85° with respect to the surface normal. The study is performed by measuring the angular and energy distribution of the scattered negative ions. The reflection can take place along two paths. One path is reflection from the cesium surface layer, the other one is reflection from the tungsten substrate. A dependence of the final charge state on the path is observed. It is inferred that this phenomenon is due to incomplete neutralization of the protons scattered from the cesium layer. The energy loss of the reflected ions cannot be accounted for by using only the binary collision model. Also the electronic stopping of the atoms by the metal electrons is shown to be an important energy loss mechanism. Total conversion measurements of H+ to H- combined with the measurements of the negatively charged fraction of the scattered particles, as reported in the proceeding paper, yield the particle reflection coefficient as a function of the angle of incidence. These reflection coefficients show that for angles of incidence less than 75° already more than 50% of the particles do not reflect from the surface. Total conversion efficiency measurements with H- ions as primary ions show that the influence of the initial charge state on the total conversion is very small.  相似文献   

19.
Summary The emission-oriented integral form of Boltzmann transport equation is applied to the sputtering phenomenon. It is shown that the central quantity in the formulation, namely the characteristic mean free path of the phenomenon, can be the low-energy transport mean free path. The same mean free path gives a measure of the mean escape depth as derived in experiments and computer simulation studies. Finally, the sputtering yields, calculated by using the same mean free path, when compared with the experimental results, show an evident improvement with respect to the Sigmund theory.  相似文献   

20.
We present the electron energy loss spectra for Ar clusters as a function of incident electron energy and of cluster size. In spectra measured with 100 eV incident electron energy the bulk excitation peak becomes visible for a mean cluster size above 170 atoms per cluster. For 250 eV incident electron energy the bulk excitation peak is clearly observable even for a mean cluster size of 120 atoms per cluster. These experimental results are qualitatively reproduced by a simple calculation that accounts for the mean free path of electrons in Ar clusters; i.e., the penetration depth of incident electrons into the cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号