首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
为准确测定铌钛合金中氢含量,使用LECO-404氢分析仪,采用惰性气氛脉冲加热熔融试样,热导法测定。研究了不同的脱气功率对空白值和试样分析值的影响,选择了脱气功率为4 500 W。通过助熔剂实验,选择了0.50g锡作为铌钛合金中氢释放的助熔剂。验证了钛标准样品的适用性。确定了分析功率为3 500 W,最短积分时间为60s。精密度实验中氢含量测定的相对标准偏差(RSD)为2.5%~5.5%,加标回收率为97.82%~104.5%,可以准确测定铌钛合金中氢含量。研究结果对准确测定铌钛合金中氢含量具有指导意义。  相似文献   

2.
首次使用惰气熔融-红外吸收/热导法实现无烟煤中氮、氢元素的同时、快速、准确测定.探究分析条件,发现当称样量为0.030 0 g,分析功率为5 500 W,氮元素的积分延迟时间为15 s,集成时间为55 s,氢元素的积分延迟时间为5 s,集成时间为85 s,且使用石墨套埚时,氮氢元素的释放最完全、合理.方法中氮、氢校准曲线的相关系数分别为0.994 9、0.994 0,检出限分别为0.321%、0.189%,定量限分别为0.326%、0.194%,精密度分别为3.60%、0.63%,满足线性关系及方法要求.惰气熔融-红外吸收/热导法重复性好、高效便捷、操作和维护简单,可用于无烟煤中氮、氢元素的定量检测.  相似文献   

3.
针对镍钛(NiTi)合金中的氧含量进行研究,建立了惰气熔融-红外吸收法测定NiTi合金中氧含量的新方法。研究了不同助熔剂、称样量、分析功率、分析时间及比较器水平对测定结果的影响。确定采用镍做助熔剂,分析功率为4.0至5.5kW,分析时间为30s,比较水平为2的条件对NiTi合金中氧含量进行测定。惰气熔融-红外法测定NiTi合金氧含量相对标准偏差为1.8%,对标准样品的测定结果与标准值基本相符。方法操作简单,分析速度快,能满足生产要求,对工艺研究和产品质量控制具有积极意义。  相似文献   

4.
近年来钢铁行业发展迅速,同时环境污染问题日益突出,烧结烟气污染物主要是硫化物和氮化物等,目前烧结工序强制性配套了脱硫装置,烧结烟气中硫化物能够达到排放要求。由于工业上使用的脱硝装置成本过高及脱硝方式的不成熟[1],大部分烧结工序都没有安装氮氧化物脱除装置。而烧结过程中一般使用焦粉为燃料,如果焦粉中氮含量过高会导致烧结烟气中氮氧化物过高,如果氮氧化物含量超标则会导致烧结停机,对生产运行造成较大影响,因此对焦粉中氮含量的监测尤为重要。  相似文献   

5.
高品质稀土钢要求进行精确低氧含量控制,而依据现有GB/T11261-2006标准进行氧含量测定,检测结果具有较大的不准确性。本研究以具有不同镧、铈稀土元素含量的稀土钢为对象,以其氧含量精确测定为目标,基于惰气熔融-红外吸收法,开展了分析功率、助熔剂和称样量对镧铈稀土钢中氧含量分析结果的影响研究。结果表明,对于不同镧、铈元素含量的稀土钢,需要采用不同的分析方法:当稀土钢中的镧、铈含量较低时,通过降低分析功率即可较为精确的测定稀土钢中的氧含量;对于镧、铈含量较高的稀土钢,在调控分析功率(分析功率在4000W~4500W)的基础上,需同时采用锡作为助熔剂,并将助熔剂与样品比例设定为1:1(称样量为0.3g~0.6g),即可实现氧含量的精确测定。精密度验证实验结果显示,采用本研究所建立的方法,氧含量测试结果相对标准偏差(RSD)小于8.0%;采用钢标样进行回收率实验,回收率值在97%~108%,而加标回收率略有升高的原因在于助熔剂Sn降低了合金熔点,使少量难熔氧化物中的氧得到更充分释放。本研究所建立的分析方法可准确测定不同镧、铈元素含量稀土钢中的氧含量。  相似文献   

6.
研究了惰性气体-红外光谱法测定镨钕镝合金中的氧,采用石墨套坩埚和高纯镍篮,在4500W的分析功率下,对0.1g实际样品进行分析,取得了满意的效果。实验结果表明,样品释放完全,测定结果相对标准偏差(RSD,n=5)为1.9%,以GSBH40104—1996标准样品(ω(O)/%=0.00943)进行加标回收实验,回收率测量结果为95%~108%。  相似文献   

7.
7LiF是制备熔盐堆冷却剂7LiF-BeF2熔盐的基础原材料,其杂质含量的多少与熔盐纯度及应用性能直接相关。采用惰气熔融-红外吸收法,建立了熔盐堆用7LiF中杂质氧含量测定的新方法。考察了不同助熔剂和加热功率等条件对7LiF中氧含量的影响,找到了较好的 7LiF中氧含量测定方法。在分析功率为2200W,用银舟做助熔剂,称样量为0.1 g的条件下对7LiF试样进行了测定,氧的相对标准偏差为2.9%;加标回收率为103-110%。结果表明,本测定方法易操作,速度快,能满足7LiF生产过程中的质量控制要求,为第四代先进核能反应堆用7LiF规模化制备提供了有力的技术支持。  相似文献   

8.
<正>氮化硅结合碳化硅材料是在少量添加剂(氧化物)存在下,以碳化硅和硅为原料经高温氮化而成。其具有一系列的优良性能[1-4],如分解温度高达2 500℃、耐高温冰晶石腐蚀、不被有色金属和钢水润湿[2]等。氮化硅结合碳化硅材料广泛应用于有色和冶金等行业,材料中氧量的增加会导致抗腐蚀性能下降[3]。因此,材料中氧量的测定具有重要意义。非氧化物材料由于熔点高,样品需要在高温和  相似文献   

9.
对含锌铝合金中氢分析的取样量、取样方法和加热释氢功率等方面进行了探索性试验,建立了脉冲加热-热导法测定铝合金中氢含量的测定方法.经过条件试验和对比试验,确定了最佳取样量为2.0~4.0 g,表面氢加热功率为850~900W,体积氢加热功率为1250~1350 W.试样9次重复测定结果的相对标准偏差小于6%.用该法对标准...  相似文献   

10.
沈汝美  陈名浩 《分析化学》1996,24(10):1208-1211
利用游离硅和游离铝与碱溶液作用产生氢气,使它们与SiC、Si3N4、AlN,SiO2以及Al2O3等多种硅(铝)化合物分离。  相似文献   

11.
Nd-Fe-B永磁材料氢脆过程及Al+Al2O3阻氢涂层研究   总被引:2,自引:0,他引:2  
从材料保护的角度出发,在分析了Nd-Fe-B永磁材料的氢脆过程及氢脆的特点后,用RF磁控溅射制备一定厚度的Al薄膜并在一定条件下进行氧化处理,得到了Al A12O3复合涂层。用SEM和XBD分析了涂层形貌和组成,并用高压气相充氢的方式测试了涂层的阻氢性能。研究表明,厚度为8.0μm复合涂层的阻氢性能为:在10MPa的H2环境中(25℃),阻氢时间达65min,且对磁体的磁性能无不良影响。  相似文献   

12.
采用惰性气体熔融–红外吸收光谱法测定硅中的氧,选择锡囊和镍篮做助熔剂,样品称样量为0.05 g,分析功率为4.5 kW。实验结果表明,样品释放完全,测定结果的相对标准偏差为4.67%(n=5),用GSBH 40104–1996标准样品进行加标回收试验,回收率为94%~104%,精密度和准确度满足测定要求。  相似文献   

13.
建立了脉冲熔融-飞行时间质谱法测定Nd-Fe-B材料中的氧、氮、氢的方法,在选定的实验条件下,氧、氮、氢的检出限分别为0.021,0.060,0.002μg/g;利用系列标准样品得到各元素的校准曲线,线性相关系数R2均大于0.99。将方法应用于Nd-Fe-B材料的测定,经对比实验验证,方法测定值与传统的脉冲熔融-红外/热导方法测定值相符合。  相似文献   

14.
建立顶空气相色谱法测定富氢水中氢气的方法。采用顶空的方式将水中的微量氢气转移到气相中,通过分子筛色谱柱分离,用热导检测器测定。分析条件如下:分流比为5∶1,气液体积比为1.2∶1,平衡温度为40℃,平衡时间为15 min。水中氢气的质量浓度在0.080~1.603 mg/L范围内与色谱峰面积成良好线性关系,线性相关系数为0.999,方法检出限为0.005 mg/L。样品加标回收率为91.03%~94.25%,测定结果的相对标准偏差为0.61%~2.32%(n=6)。该法可用于富氢水中氢气的测定。  相似文献   

15.
制备钯-5A分子筛萃取头,使用固相微萃取-气相色谱联用技术,建立了对混合气体中微量氢气的分析方法.实验结果表明,含氢浓度在0.0011~0.1250 mL/L范围内,具有良好线性关系,检出限为9×10-4mL/L.此方法和气相色谱法比较,有更高的灵敏度和更少的干扰,2种方法的标准偏差为8.7%.  相似文献   

16.
端视ICP-AES法测定钕铁硼永磁材料中常量及微量元素   总被引:2,自引:0,他引:2  
报道了用高灵敏度的电感耦合等离子体原子发射光谱法(ICP-AES)直接测定钕铁硼永磁材料中常量、少量及微量元素:Nd、Fe、Co、B、La、Ce、Pr、Dy、Gd、Sm、Al、Mn、Ca、Mg、Ga和Si的分析方法。选择了合适的分析线,研究了基体元素Nd、Fe、Co对被测杂质元素分析线的光谱干扰,采用基体匹配与背景扣除法进行校正。各被测元素的检出限为0.5~30μg/L,回收率为92~110%,相对标准偏差小于7%。本法已用于钕铁硼产品的快速检验,并获得了满意的结果。  相似文献   

17.
碘量法是测定管道输送天然气中硫化氢的一种经典方法,而管道输送天然气中硫化氢含量较低,按照GB/T11060.1–2010方法测定,取样量较大,取样时间长,影响工作效率。针对此问题,从两方面对碘量法进行改进:减小天然气取样量进行试验,并与国标规定取样量时的实验结果进行比对,确定最佳取样量;增大取样流量进行试验,并与国标规定取样流量时的实验结果进行比对,确定最佳取样流量。对硫化氢质量浓度为7.2~14.3,14.3~28.7 mg/m~3的天然气样品进行试验测定,结果表明,将天然气取样量减少为20 L,取样时间分别由200,100 min缩短为40 min;将天然气取样流量设定为750 m L/min,取样时间分别由200,100 min缩短为133,67 min。减少取样量或者提高取样流量,均能缩短管输天然气的取样时间,提高检测效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号