首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A DFT study on the Au–N interaction for some groups of N-donor heterocycles L {L = pyridines (py), pyrimidines (pm), imidazoles (im), pyrazoles (pz) and isoxazoles (io)} in neutral AuX3L complexes {AuX3 = AuBr3, AuCl3, trans-AuCl(CN)2, Au(CN)3} is reported. Linear relationships between the AuX3 Mulliken charge in AuX3L and the computed proton affinity (PA) of the heterocycle were found for all the considered ligands. The different slopes found on changing the N-donor species represent a measure of the π-acidity of these nitrogen ligands once coordinated to the metal centre, by the consequence a π-acceptor ability scale has been derived. The π-acceptor ability of the 5-membered N-donor ligands resulted in all the cases greater than that of the 6-membered N-heterocycles. The proton affinity average value corresponding to a zero charge of the AuX3 and L fragments in the AuX3L species has been estimated. This parameter represents the minimum PA value for the formation of a bond between the N-heterocycles and gold(III) and it does not depend on the electronic features of the coordinated ligands. The sensitivity of the AuX3 fragments towards ligands PA variations follows the order Au(CN)3 < trans-AuCl(CN)2 < AuCl3 < AuBr3 and this last result has been explained on the basis of the metal fragments relative hardness.  相似文献   

2.
Reactions of cycloaurated gold(III) dichloride complexes, with 1,2-C6H4(NHCOMe)2 and silver(I) oxide, or with C2H4(NHSO2Tol)2 (Tol = p-tolyl) or 1,2-C6H4(NHSO2Tol)2 and trimethylamine, give a series of new auracyclic complexes containing the Au–NR–CH2CH2–NR (R = SO2Tol) and Au–NR–C6H4–NR (R = COMe or SO2Tol) five-membered ring systems. An X-ray structure determination on (2-bp)Au{N(COMe)C6H4N(COMe)} (2-bp = cycloaurated 2-benzylpyridine) shows the presence of puckered metallacyclic rings, with both acetyl substituents positioned below the Au(III) coordination plane. The complex (2-bp)Au{N(COMe)C6H4N(COMe)} undergoes ring cleavage in the presence of halide and water, to give the complex (2-bp)Au{N(COMe)C6H4NH(COMe)}Cl, which was characterised crystallographically, and shown to contain a monodentate amidate ligand. Biological activity studies of the new auracyclic complexes are also reported, against P388 murine leukaemia cells and a range of bacteria and fungi, with a number of complexes showing high activity.  相似文献   

3.
4.
The neutral gold(III) complexes AuCl3(pm) (pm = pyrimidine, 2-methylpyrimidine, 4-methylpyrimidine, 5-methylpyrimidine, 4,6-dimethylpyrimidine, 2-aminopyrimidine) have been synthesised and characterised. The proton affinity (PA) values of the free and coordinated N-heterocycles have been theoretically estimated on the basis of DFT calculations. The coordination to the AuCl3 metal fragment causes a strong lowering of the basicity of the residual protonation sites, with PA variations around −25 kcal mol−1. The lowering of PA caused by the bonding to the gold centre results related to the presence of space-demanding groups near the coordinating nitrogen atom and to the π-back donation of electron density from the metal to the protonated ligand.  相似文献   

5.
Cationic-anionic chloride complexes of gold(III), [(L)AuCl2]BF4 (L = 2,2??-bipyridine and 1,10-phenanthroline (Phen)), are synthesized. Their reactions and the reactions of complex [(Phen)AuCl2]Cl with silver(I) and sodium acetates are studied. The chloride ligands in complexes [(L)AuCl2]BF4 are easily substituted by the acetate ligands in the reaction with silver(I) acetate to form new carboxylate complexes [(L)Au(OAc)2]BF4. The reaction of complex [(Phen)AuCl2]Cl with sodium acetate in glacial acetic acid affords binary complex salt [(Phen)AuCl2][AuCl4], which is characterized by single-crystal X-ray diffraction analysis.  相似文献   

6.
Reactions of the cycloaurated gold(III) dichloride complexes [AuCl2(anp)] (anp = 2-anilinopyridyl), [AuCl2(bp)] (bp = 2-benzylpyridyl) and [AuCl2(tolpy)] (tolpy = 2-(p-tolyl)pyridyl) with alizarin (H2az) and Me3N base in refluxing methanol gave the complexes [Au(az)L] (L = anp, bp or tolpy). Additionally, the reaction of [AuCl2(tolpy)] with 3,4-dihydroxybenzaldehyde (H2dhb) and Me3N gave the complex [Au(dhb)(tolpy)]. These complexes contain the ligands coordinated as functionalised catecholate groups, allowing introduction of new functionalities into this class of complex. The complexes are poorly soluble in most organic solvents but were successfully characterised by ESI MS, IR and NMR spectroscopies. A detailed 1H and 13C NMR study on [Au(dhb)(tolpy)] shows that it exists as two isomers with regard to the position of the aldehyde group compared to the cycloaurated ring system; DFT calculations were carried out in order to provide some insight on the spectroscopic assignment of the two isomers.  相似文献   

7.
We study the interaction of dialkyl substituted and cyclic cadmium dithiocarbamates with [AuCl4]? anions in 2M HCl medium. The state of the chemisorbents upon contact with AuCl3 solutions is controlled by 113Cd MAS NMR spectroscopy. The result of the heterogeneous reactions involving chemisorption binding of gold(III) from the solutions and partial ion exchange is the formation of heteropolynuclear gold(III)-cadmium complexes. The crystal and molecular structure of the acetone-solvated form of polymeric bis-(N,N-diethyldithiocarbamato-S,S′) gold(III) hexachlorodicadmate is identified by single-crystal XRD. The main structural moieties of the compound are complex [Au{S2CN(C2H5)2}2]+ cations and [Cd2Cl6]2? anions. The structural self-organization of the complex at the supramolecular level is attributed to the secondary Au…S bonds between neighboring isomeric complex gold(III) cations; the bonding results in the formation of linear polymer ([Au{S2CN(C2H5)2}2]+) n chains, with [Cd2Cl6]2? anions alternating to the right and left of the chains.  相似文献   

8.
Reaction of isopropyl[(2-pyridyl)alkyl]amines such as N-isopropyl-N-2-methylpyridine or N-isopropyl-N-2-ethylpyridine with aqueous solutions of NaAuCl4 led to the formation of [LAuCl2][AuCl4] in low yields, where L = pyridyl amine bound to gold in a bidentate fashion. Reaction of 2-(3,5-diphenyl-1H-pyrrol-2-yl)pyridine with aqueous NaAuCl4, however, proceeded with formal loss of HCl and direct formation of the gold(III) amido complex L′AuCl2, where L′ = deprotonated pyrrolyl ligand. Optimization of the reaction conditions to make the new amido complex identified MeCN:H2O (1:2) as the best choice of solvent, affording product in 92% yield. This dichloro amido complex is a convenient precursor to L′AuMe2, which was found to be air-stable and thermally robust.  相似文献   

9.
Ligands N,N'-tetramethylthiourea and 2-mercapto-1-methyl-imidazole form stable Au(III) complexes [AuCl3(N,N'-tetramethylthiourea)] (1) and [AuCl3(2-mercapto-1-methyl-imidazole)] (2) instead of reducing the Au(III) metal center into Au(I), which would be typical for the attachment of sulfur donors. Compounds 1 and 2 were characterized by spectroscopic methods and by X-ray crystallography. The spectroscopic details were explained by simulation of the UV-Vis spectra via the TD-DFT method. Additionally, computational DFT studies were performed in order to find the reason for the unusual oxidation state in the crystalline materials. The preference for Au(III) can be explained via various weak intra- and intermolecular interactions present in the solid state structures. The nature of the interactions was further investigated by topological charge density analysis via the QTAIM method.  相似文献   

10.
Gold(III) and gold(I) anionic salts mediate the 1,3-dipolar cycloaddition of N-benzyl-C(2-pyridyl)nitrone (2-PyBN) (1) and methyl acrylate (2) (gold 5-10 mol% with respect to the nitrone) decreasing the reaction time and favouring the formation of the exo (cis) isomer. The best catalyst found was Na[AuCl4] (7) able to perform the addition reaction in 56 h (instead of the 96 h required for the control experiment) and giving an endo/exo relation between isomers of 44/56 (as opposed to 73/27, blank reaction). The catalytic activity of several organometallic gold complexes with the radicals pentafluorophenyl (C6F5) or mesityl (2,4,6-(CH3)3C6H2) has been also investigated. In some cases the activity is very similar to that obtained with inorganic salts. With the aim of identifying possible metallic intermediates in the cycloaddition reaction, novel gold(III) and gold(I) nitrone derivatives such as [Au(C6F5)Cl2(2-PyBN)] (21), [Au(C6F5)2Cl(2-PyBN)] (22) and [Au(C6F5)(2-PyBN)] (23) have been prepared and characterized. The reaction between [AuCl3(tht)] and 2-PyBN unexpectedly affords the ionic compound [2-PyBN-H][AuCl4] (5) which also displays catalytic activity and moderate regioselectivity and whose crystal structure has been confirmed by X-ray studies.  相似文献   

11.
A series of five gold(I) halide complexes with the two isomeric methoxy-substituted triarylphosphines, tris(2-methoxyphenyl)phosphine [P(oanis)3], [AuP(oanis)3X] [for X = Cl, (1); X = Br, (2) and X = I, (3)] and tris(4-methoxyphenyl)phosphine [P(panis)3], [AuP(panis)3X] [for X = Br (4) and X = I (5)] have been synthesized and characterized by single crystal X-ray diffraction and solution 31P{1H} NMR spectroscopy. The structure determinations confirm the expected presence of linear two-coordination about the gold centres in all five complexes with bond distance and angle data typical of this type of compound [Au–P, 2.239(2)–2.259(3) Å; Au–Cl, 2.294(2) Å; Au–Br, 2.385(2)–2.402(2) Å; Au–I, 2.546(1)–2.554(1) Å; P–Au–X; 175.3(1)–180°]. All analogues except the iodo complex 5 crystallize with one complex molecule in the crystallographic asymmetric unit. The bromo and iodo complexes 2 and 3 constitute a trigonal isomorphous set while the bromo complex 4 is also isomorphous with the previously determined chloro complex [AuP(panis)3Cl]. The 2-methoxy analogues are stabilized by significant methoxy-O?Au interactions.  相似文献   

12.
The chemisorption interaction between the binuclear cadmium diethyl dithiocarbamate (EDtc), [Cd2{S2CN(C2H5)2}4], (chemisorbent I) and AuCl3 solutions in 2 M HCl results in the formation of polymeric gold(III) complexes: ([Au{S2CN(C2H5)2}2][AuCl4]) n (II) and [Au{S2CN(C2H5)2}Cl2] n (III) with the same Au : EDtc : Cl ratio (1 : 1 : 2). The alternating centrosymmetric cations and anions of complex II are structurally self-assembled to form linear polymeric chains: the gold atom in [Au{S2CN(C2H5)2}2]+ forms secondary Au(1)?Cl(1) bonds (3.7784 Å) with two neighboring [AuCl4]? anions. This binding is additionally strengthened by secondary S(1)?Cl(1) interactions (3.4993 Å). The mixed-ligand complex III comprises two structurally non-equivalent molecules [Au{S2CN(C2H5)2}Cl2]: A—Au(1) and B—Au(2), each being in contact with two nearest neighbors through pairs of unsymmetrical secondary bonds: Au(1)?S(1)a/b 3.4361/3.6329; and Au(2)?S(4)c/d 3.4340/3.6398 Å. At the supramolecular level, this gives rise to independent zigzag-like polymeric chains, (?A?A?A?) n and (?B?B?B?) n along which antiparallel isomeric molecules of III alternate. The chemisorption capacity of cadmium diethyl dithiocarbamate calculated from the gold(III) binding reaction is 963.2 mg of gold per 1 g of the sorbent. The recovery conditions for the bound gold were elucidated by simultaneous thermal analysis of II and III. The DSC curves reflect different sets of heat effects, because thermolysis occurs for complex molecules (III) or for cations and anions (II). Nevertheless, the patterns of experimental TG curves are similar despite different structures of the complexes. The final product of thermal transformations is reduced gold.  相似文献   

13.
A simple spectrophotocolorimetric method devoted to the measurement of gold content in nanoparticles (NPs) was developed. It includes two steps: (i) metal gold NPs (Au NPs) are oxidized into the AuCl4 anion using a 5 × 10−2 M HCl-1.5 × 10−2 M NaCl-7 × 10−4 M Br2 solution, next (ii) AuCl4 concentration is measured using a spectrophotometric assay based on the reaction of AuCl4 with the cationic form of Rhodamine B to give a violet ion pair complex. This latter is extracted with diisopropyl ether and the absorbance of the organic complex is measured at 565 nm. The method is linear in the range 6-29 μM of AuCl4 with a limit of detection of 4.5 μM.The analytical method was optimized with respect of bromine excess to obtain complete Au NPs oxidation. The method was applied to two types of Au NPs currently under investigation: citrate-stabilized Au NPs and Au NPs capped with dihydrolipoic acid (Au@DHLA). Both the gold content of Au NPs and the concentration of NPs (using NP diameter measured by transmission electron microscopy) have been calculated.  相似文献   

14.
The interaction of binuclear cadmium dialkyldithiocarbamates [Cd2(S2CNR2)4] with solutions of AuCl3 in 2M HCl gives polynuclear gold(III) complexes ([Au(S2CNR2)2][AuCl4]) n , where R = C4H9 (I) and R2 = (CH2)5 (II). The structures of the synthesized compounds solved by X-ray diffraction analysis are char-acterized by a complicated organization at the supramolecular level. The structures are based on polymer chains (I) and layers (II) involving isomeric cations [Au(S2CNR2)2]+ and anions [AuCl4]. The thermal behavior of the synthesized complexes is studied by simultaneous thermal analysis including thermogravimetry and differential scanning calorimetry. The final product of the thermal transformations of the studied complexes is shown to be reduced metallic gold.  相似文献   

15.
Six new gold(III) complexes [Au(bzpam)Cl2] (1, bzpamH = N‐benzyl picolinamide), [Au(hetpam)Cl2] (2, hetpamH = N‐(2‐hydroxyethyl) picolinamide), [Au(pypam)Cl]AuCl4 (3, pypamH = N‐(pyridin‐2‐ylmethyl) picolinamide), [Au(dmepam)Cl]AuCl4 (4, dmepamH = N‐(2‐(dimethylamino)ethyl) picolinamide), [Au(bhetpydam)Cl] (5, bhetpydamH2 = N,N′‐bis(2‐hydroxyethyl) pyridine‐ 2,6‐dicarboxamide) and [Au2(hedam)Cl4] (6, hedamH2 = N,N′‐(hexane‐1,6‐diyl) dipicolinamide) with deprotonated pyridyl carboxamide were synthesized and characterized by elemental analysis, molar conductivity, IR, H1 NMR and C13 NMR techniques. The analytical data showed that deprotonated pyridyl carboxamide coordinated with gold(III) ions through a nitrogen atom. The cytotoxicity against Bel‐7402 and HL‐60 cell lines was tested by MTT (3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) and SRB (sulforhodamine B) assays. The results indicated that the complexes exerted cytotoxic effects against Bel‐7402 and HL‐60 cell lines, complex 6 had better cytotoxicity than cisplatin, and complex 3 displayed similar cytotoxicity to cisplatin against Bel‐7402 cell line. The results suggested that the characteristics of ligands had an important effect on cytotoxicity of complexes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Reaction of Na2[PdCl4] with two equivalents of amino- or acetylamino-pyridines (LH) affords trans-[PdCl2-(LH)2] {LH = 2-amino-3-methylpyridine (2-ampyH), 3-aminopyridine (3-apyH), 2-acetylamino-3-methylpyridine (2-acmpyH), 3-acetylamino-pyridine (3-acpyH)}. An X-ray crystal structure of trans-[PdCl2(2-ampyH)2] shows that the 2-ampy-H ligands are coordinated in a monodentate fashion via the nitrogen atoms of the pyridine rings. Treatment of trans-[PdCl2(2-acmpyH)2] with NEt3 affords the cyclometalated complex, trans-[Pd(κ2-2-acmpy)2], the X-ray structure of which shows that the 2-acmpy ligand is coordinated to palladium in a bidentate fashion via the nitrogen atom of the pyridine ring and oxygen. Reaction of trans-[PdCl2(LH)2] with two equivalents of sodium saccharinate affords the bis(saccharinate) complexes, trans-[Pd(sac)2(LH)2], in which the saccharinate anions are coordinated via the amide nitrogen atom.  相似文献   

17.
New palladium(II) and platinum(II) complexes of saccharinate (sac), trans-[Pd(py)2(sac)2] (1), cis-[Pt(py)2(sac)2] (2), trans-[Pd(3-acpy)2(sac)2] (3) and cis-[Pt(3-acpy)2(sac)2] (4) (py = pyridine and 3-acpy = 3-acetylpyridine) have been synthesized. Elemental analysis, UV-Vis, IR, NMR and TG/DTA characterizations have been carried out. The structures of 1-4 were determined by X-ray diffraction. The palladium(II) and platinum(II) ions are coordinated by two N-bonded sac ligands, and two nitrogen atoms of py or 3-acpy, forming a distorted square-planar geometry. The palladium(II) complexes (1 and 3) are trans isomers, while the platinum(II) complexes (2 and 4) are cis isomers. The mononuclear species in the solid state are connected by weak intermolecular C-H?O hydrogen bonds, C-H?π and π?π stacking interactions. The platinum(II) complexes show significant fluorescence at the room temperature.  相似文献   

18.
The acetonylgold(III) compound [Au(ppy)(CH2COCH3)Cl] (1) (ppy = 2-phenylpyridine) was unexpectedly obtained during the crystallization process of Au(III) lactate complex [Au(ppy)(CH3CHOHCOO)Cl]. This new structure prompted us to further study the role of Au(III) complexes on the carbon-hydrogen activation of ketones. Complex [Au(ppy)(CH2COCH3)NO3] (2) was synthesized by reacting [Au(ppy)(NO3)2] with acetone while the ketonyl Au(III) complex [Au(apd)Cl2] (3) (Hapd = 2-acetylpyridine) was obtained through carbon-hydrogen bond activation of the acetyl group. The crystal structures of 1 and 2 have common features: a square-planar Au(III) centre coordinated by one five-membered chelate ring, one acetonyl ligand and one anion (chloride or nitrate). Both structures show that carbon-hydrogen activation of acetone by 2-phenylpyridine-Au(III) complexes leads to the formation of acetonyl-Au(III) complexes. The Au-CH2 bond lengths (2.067(7) Å, 1 and 2.059(5) Å, 2) are similar to each other but longer than the Au-C (phenyl) bond lengths. The two softest ligands (carbanion) are also cis to each other in the thermodynamically most stable isomer. In complex 3, the σ-bonded acetyl group is confirmed by 13C DEPT NMR spectroscopy.  相似文献   

19.
The reaction of gold(III) neutral complexes AuBr(CN)2(N–N) {N–N = 2,2′-bipyridine (bpy), 5,5′-dimethyl-2,2′-bipyridine (Me2bpy), 1,10-phenanthroline (phen)} with a stoichiometric amount of K[AuCl4] · 2H2O in nitromethane at room temperature led to the formation of 1:1 electrolytes which were characterized by NMR and IR spectroscopy, conductivity measurements, elemental analyses and X-ray diffraction. Both the anions and the cations of these salts are singly charged square-planar Au(III) complexes and the cations have general formula [AuCl2(N–N)]+. A hypothesis on the possible reaction mechanisms is presented to give an explanation for the formation of the reaction products.  相似文献   

20.
Mixed-ligand complexes of general formula, [Cu(NNS)(sac)] (NNS′ = S-benzyl-β-N-(2-acetylpyrid-2-yl)methylenedithiocarbazate, NNS″ = S-benzyl-β-N-(2-benzoylpyrid-2-yl)methylenedithiocarbazate and NNS? = S-benzyl-β-N-(6-methylpyrid-2-yl)methylenedithio-carbazate, sac = the saccharinate anion) have been synthesized by reacting [Cu(sac)2(H2O)4] · 2H2O with the appropriate ligands in ethanol and characterized by various physico-chemical techniques. Magnetic and spectral evidence indicate that the complexes are four-coordinate in which the Schiff bases coordinate as NNS ligands and the sac- anion coordinates as a unidentate N-donor ligand. An X-ray crystallographic structural analysis of [Cu(NNS′)(sac)] shows that the complex has a distorted square-planar geometry with the Schiff base coordinated to the copper (II) ion as a uninegatively charged tridentate chelating agent via the pyridine nitrogen atom, the azomethine nitrogen atom and the thiolate sulphur atom while the fourth coordination position is occupied by the N-bonded saccharinate anion. The complexes have been evaluated for their biological activities against selected pathogens and cancer cell lines. They display weak activity against the pathogenic bacteria and fungi. The complexes were highly active against the leukemic cell line (HL-60) but only [Cu(NNS′)(sac)] was found to exhibit strong cytotoxicity against the ovarian cancer cell line (Caov-3). All complexes were inactive against the breast cancer cell line (MCF-7).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号