首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel dinuclear copper(II) complex with the amino acid l-arginine (l-arg), with mono and bidentate HPO42− oxoanions and an OH anion. [Cu2(l-arg)2(μ-HPO4-O)(μ-HPO4-O,O′)(μ-OH)] · (H3O)+ · 6H2O (1) was prepared and its structure was determined by X-ray diffraction methods. The two independent copper ions are in a distorted square pyramidal coordination, each bonded to one l-arginine molecule. These two Cu(l-arg) units are bridged by two monoatomic equatorial–apical oxygen ligands belonging to a monodentate hydrogenphosphate group, and to the hydroxyl group. The copper ions in the dinuclear unit at d = 3.1948(8) Å are also connected by two equatorial oxygen belonging to a bidentate hydrogenphosphate. This dinuclear character and bridging scheme, not common for metal–amino acid compounds, is a consequence of the properties of the phosphate anions. The magnetic susceptibility at temperatures between 2 and 300 K and the isothermal magnetization curves at T = 2.29(1) K with applied fields up to 9 T were measured. The magnetic data indicate an antiferromagnetic intradinuclear exchange coupling J/kB = −3.7(1) K and using a molecular field approximation we estimated a weaker ferromagnetic interaction J′/kB ∼ 0.3 K between neighbour dinuclear units.  相似文献   

2.
The reaction of indium thiocyanate with bipyridine (4,4-Bipy) and urotropine (Ur) gave [H2(4,4′-Bipy)][In(H2O)2(NCS)4]2 (I) and [HUr]2[In(H2O)(NCS)5] · 2H2O (II), which were identified using elemental analysis, IR spectra, and thermogravimetric analysis. The thermal decomposition of compound I and II ends at 650 and 640°C, respectively, and gives In2O3. X-Ray diffraction analysis of compound I showed that complex anions in the crystal form chains through O-H…S hydrogen bonds. The anion chains form a close packing of columns with bipyridine cations located in the voids. Original Russian Text ? S.P. Petrosyants, A.B. Ilyukhin, V.A. Ketsko, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 6, pp. 951–955.  相似文献   

3.
The chain coordination polymers [Na2(μ-H2O)(H2O)CB[5]]Cl2 · 6H2O (I), [Na3(μ-H2O)4(H2O)4(CNPy@CB[6])]Cl3 · 8H2O (II), and [Rb2(μ-H2O)2(CNPy@CB[6])]Cl2 · 8H2O (III) were prepared by heating (110°C) of a mixture of sodium or rubidium chloride, cucurbit[n]uril (CB[n], where n = 5, 6), 4-cyanopyridine, and water. According to X-ray diffraction data, binding of polynuclear cations with CB[n] in IIII occurs through coordination of the oxygen atoms of the cucurbit[n]uril portals to alkali metal atoms. Complexes IIII of the above composition isolated to the solid phase as supramolecular compounds with CB[n] were structurally characterized for the first time.  相似文献   

4.
The three-dimensional coordination polymers [Ni4(μ-H2O)2(nic)8 · 2H2O] (nic = nicotinate, 3-pyridylcarboxylate) (1) and [Ni2(H2O)2(nic)4(4,4′-bpy)] (2) were prepared by the hydrothermal reaction of nickel(II) chloride, nicotinic acid, sodium hydroxide and an organoimine (several choices for 1, 4,4′-bipyridine for 2). The non-centrosymmetric crystal structure of 1 is constructed from binuclear [Ni2(μ-H2O)(μ3-nic)2]2+ subunits joined into 3-D via μ2- and μ3-nicotinate ligands, forming “bird”-shaped cavities that contain water molecule dimers. The crystal structure of 1 is compared and contrasted to two previously reported nickel(II) nicotinate phases. In contrast, the crystal structure of 2 is assembled from neutral [Ni(H2O)(μ2-nic)2] layers, connected into 3-D via tethering 4,4′-bpy moieties. 1 exhibits weak antiferromagnetic coupling across its binuclear subunits (J = −1.61(2) cm−1 for g = 2.233(2)), although anisotropy due to single-ion zero-field-splitting (D) cannot be excluded. The 3-D structures of 1 and 2 remain stable above 300 °C and 200 °C, respectively.  相似文献   

5.
6.
The complex [Na2(H2O)10][Na(H2O)3]2[MnW6O18(OH)6] · 6H2O was synthesized and studied by mass spectrometry, thermogravimetry, IR spectroscopy, X-ray diffraction. The crystals are monoclinic, space group P21/n, a = 11.698(2), b = 11.670(2), c = 14.652(3) ?, β = 102.52(3)°, V = 1952.7(7) ?3, ρ(calcd.)= 3.45 g/cm3, Z = 2.  相似文献   

7.
A procedure for the synthesis of the heteropolymetallic germanium(IV) and copper(II) complex with trihydroxyglutaric acid (H5Thgl) [Cu(H2O)6][Ge(μ3-Thgl)2{Cu(H2O)2}2] · 2H2O (I) was developed and the complex was isolated for the first time in the solid state. The product was characterized by elemental analysis, powder X-ray diffraction, thermogravimetry, and IR spectroscopy. Compound I was studied by X-ray crystallography. The crystals are monoclinic, a = 10.216(2)?, b = 12.272(3)?, c = 10.679(2)?, β = 93.13(3)°, V = 1336.9(5)?3, Z = 2, space group P21/n, R1 = 0.0261 for 3616 reflections with I > 2σ(I). Compound I is composed of bimetallic [Ge(μ3-Thgl)2{Cu(H2O)2}2]2− anions, [Cu(H2O)6]2+ cations, and water molecules of crystallization. In the centrosymmetric trinuclear complex anion, the Ge(1) atom is bound by two fully deprotonated bridging ligands to two Cu atoms. The Ge(1) atom is coordinated at distorted octahedron vertices by six hydroxyl oxygen atoms of two Thgl5− ligands (average Ge(1)-O distance is 1.8874(13)?). The Cu coordination polyhedron in the anion is an extended square pyramid (4 + 1) formed by the bridging hydroxyl oxygen atom (Cu(1)-O(3), 2.0039(12) ?), two carboxyl oxygen atoms (average CU(1)-O distance is 1.9674(14)?) of two Thgl5− ligands, and two water oxygen atoms in equatorial and axial positions (Cu(1)-O, 1.9761(13) and 2.3643(14)?, respectively). In the centrosymmetric cation, the Cu coordination polyhedron is an extended square bipyramid (4 + 2). The equatorial Cu-O bond length is 1.9428(14) ? (average), the axial Cu-O bond is elongated to 2.5151(14)?. The cations and anions are combined by H-bonds.  相似文献   

8.
A single crystal of [Pd(NH3)4]3[Ir(NO2)6]2·H2O double complex salt is studied by X-ray diffraction. Crystallographic characteristics are as follows: a = 21.0335(5) ?, b = 8.0592(2) ?, c = 21.3452(5) ?, β = 91.254(1)°, V = 3617.43(15) ?3, P21/c space group, Z = 4, d x = 2.714 g/cm3. Single-layer pseudohexagonal packing of complex anions is determined along the [−1 0 1] direction in the structure. Complex cations and crystallization water molecules are located between the mentioned layers.  相似文献   

9.
The title complexes, K[SmIII(Edta)(H2O)3] · 2H2O(I)(H4Edta = ethylenediamine-N,N,N′,N′-tetraacetic acid) and K2[SmIII(Pdta)(H2O)2]2 · 4.5H2O (II) (H4Pdta = propylenediamine-N,N,N′,N′-tetraacetic acid), were prepared and their compositions and structures were determined by elemental analyses and single-crystal X-ray diffraction techniques, respectively. Complex I has a mononuclear structure, and the Sm3+ ion is nine-coordinated by an Edta ligand and three water molecules, yielding a pseudo-monocapped square antiprismatic conformation, and the complex crystallizes in the orthorhombic crystal system with space group Fdd2. The crystal data are as follows: a = 19.84(5), b = 35.58(9), c = 12.15(3) ?, V = 8580(38) ?3, Z = 16, ρ c = 1.925 g/cm3, μ = 3.010 mm−1, F(000) = 4976, R = 0.0252, and wR = 0.0560 for 3510 observed reflections with I ≥ 2σ(I). Complex II has a binuclear structure and the Sm3+ ion is ten-coordinated by a Pdta ligand, two oxygen atoms from a carboxylic group of adjacent Pdta ligand and two water molecules, yielding a distorted bicapped square antiprismatic prism. The complex crystallizes in the triclinic crystal system with space group P $ \bar 1 $ \bar 1 . The crystal data are as follows: a = 8.9523(15), b = 10.7106(15), c = 11.6900(19) ?, α = 80.613(5)°, β = 80.397(5)°, γ = 76.530(4)°, V = 1065.7(3) ?3, Z = 1, ρc = 1.970 g/cm3, μ = 2.532 mm−1, F(000) = 1620, R = 0.0332 and wR = 0.0924 for 5390 observed reflections with I ≥ 2σ(I).  相似文献   

10.
The complex [mer-In(H2O)3Cl3] · 18C6 (I) was isolated from the InCl3-H2O-Solv-18C6 solutions (Solv = MeOH, EtOH, THF). The second crystallization from mother solutions resulted in [fac-In(H2O)3Cl3] · 18C6 · 2H2O (II). The crystal and molecular structures of isomers I, II were identified by the powder X-ray diffraction, IR, and X-ray diffraction methods. Although complexes I, II have different compositions, they have the chain structure. The thermal decomposition of complexes I, II was studied. Original Russian Text ? A.B. Ilykhin, Zh.V. Dobrokhotova, S.P. Petrosyants, 2008, published in Koordinatsionnaya Khimiya, 2008, Vol. 34, No. 9, pp. 651–656.  相似文献   

11.
The crystal structure of copper sulfate templated by 2-methylpiperazine, (C5H14N2)[Cu(SO4)2(H2O)4] · H2O, was investigated using single crystal X-ray diffraction data. At room temperature, it crystallises in the monoclinic P21/n space group with the following unit-cell parameters: a = 6.9153(1), b = 23.1295(3), c = 10.4472(1) Å, β = 104.227(1)°, V = 1619.75(4) Å3 and Z = 4. The CuII cation adopts a slightly distorted octahedral geometry, arising from four water molecules and two sulfate tetrahedra leading to the formation of [Cu(SO4)2(H2O)4] units. The structure consists of isolated [Cu(SO4)2(H2O)4]2− anions, 2-methylpiperazinediium cations (C5H14N2)2+ and water molecules connected by a three-dimensional hydrogen-bond network. The thermal decomposition of the precursor, studied by thermogravimetry and temperature-dependent X-ray powder diffraction, proceeds through four stages giving rise to the copper oxide.  相似文献   

12.
13.
The title complexes, K[Dy(Edta)(H2O)3] · 3.5 H2O (I) (H4Edta = ethylenediamine-N,N,N′,N′-tetraacetic acid), (NH4)3[Dy(Ttha)] · 5H2O (II) (H6Ttha = triethylenetetramine-N, N,N′,N″,N‴,N‴-hexaacetic acid), and NH4[Dy(Cydta)(H2O)2] · 4.5H2O (III) (H4Cydta = trans-1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid), were prepared, and their compositions and structures were determined by elemental analyses and single-crystal X-ray diffraction techniques, respectively. In complex I, the Dy3+ ion is nine-coordinated by an Edta ligand and three water molecules, yielding a pseudo-monocapped square antiprismatic conformation, and the complex crystallizes in the orthorhombic crystal system with space group Fdd2. The crystal data are as follows: a = 19.751(7), b = 35.573(12), c = 12.227(4) ?, V = 8591(5) ?3, Z = 16, space group Fdd2 ρc = 1.877 g/cm3, μ = 3.742 mm−1, F(000) = 4800, R = 0.0259, and wR = 0.0616 for 3218 observed reflections with I ≥ 2σ(I). For complex II, the Dy3+ ion is nine-coordinated by a Ttha ligand, yielding a pseudo-monocapped square antiprismatic conformation, and the complex crystallizes in the monoclinic crystal system with space group P21/c. In addition, there is a free non-coordinate carboxyl group (-CH2COO) in the [Dy(Ttha)]3− complex anion. The crystal data are as follows: a = 10.353(3), b = 12.746(4), c = 23.141(7) ?, β = 91.005(5)°, V = 3053.2(15) ?3, Z = 4, space group P21/c ρc = 1.730 g/cm3, μ = 2.532 mm−1, F(000) = 1620, R = 0.0332 and wR = 0.0924 for 5390 observed reflections with I ≥ 2σ(I). For complex III, the Dy3+ ion is eight-coordinated by a ligand Cydta and two water molecules, yielding a distorted square antiprismatic conformation, and the complex crystallizes in the triclinic system with space group P . The crystal data are as follows: a = 8.604(3), b = 10.012(4), c = 14.369(6) ?, α = 88.330(6)°, β = 75.363(6)°, γ = 88.285(6)°, space group P V = 1196.9(8) ?3, Z = 2, ρc = 1.776 g/cm3, μ = 3.194 mm−1, F(000) = 644, R = 0.0445 and wR = 0.1041 for 3931 observed reflections with I ≥ 2σ(I). The article is published in the original.  相似文献   

14.
A new heteronuclear germanium barium complex with D-tartaric acid [Ba(H2O)4][Ge2(μ-Tart)2(μ-OH)2]·5H2O (I) (H4Tart is tartaric acid) was synthesized. The identity of compound I and its com- position were determined by elemental analysis and X-ray diffraction. The thermal stability of the compound was studied; the coordination centers of the ligand were found from IR spectroscopy. The structure of I was determined by X-ray crystallography. Crystals I are tetragonal: a = 8.5033(2) ?, c = 30.9393(11) ?, V = 2237.10(11) ?3, Z = 4, space group P41, R1 = 0.0301 based on 4215 reflections with I > 2σ(I). In crystals I, neutral [Ge2(μ-Tart)2] dimers are linked in pairs by double hydroxyl bridges to form {[Ge2(μ-Tart)2(μ-OH)2]2−} polymeric chains. Hydrated Ba2+ cations and crystal water molecules are in between the anionic chains. Polymeric complex anions, hydrated barium cations, and H2O molecules are bound by a system of hydrogen bonds to form a framework.  相似文献   

15.
16.
The structures of the crystals of Ba4[trans(N)-Co(Ida)2]3[cis-(N)-Co(Ida)2]2(ClO4)3 · 19.46H2O · 2CH3OH (I) and Ba[trans-(N)-Co(Ida)2]2 · 7H2O (II) (H2Ida is iminodiacetic acid) were determin by X-ray diffraction. The crystals of I containing two geometric isomers of the complex anions [Co(Ida)2] were obtained by a slow cooling of a hot solution, which contained initially only the cis-isomer. One Ba atom in I interacts with the trans-complex and with two cis-complexes to give a three-dimensional framework in crystal I. The positive charge of the last framework is compensated by one more trans-complex and by the perchlorate ions, one of which acts as a bidentate ligand with respect to the Ba atom. The crystals of II are built of the chains with the alternating Ba atoms and the trans-(N)-[Co(Ida)2] anions. The other anions of the same structure are each “suspended” to the Ba atoms of the chain. Original Russian Text ? M. Zabel, A.I. Poznyak, V.I. Pawlowskii, 2008, published in Koordinatsionnaya Khimiya, 2008, Vol. 34, No. 11, pp. 831–836.  相似文献   

17.
The NH4[EuIII(Cydta)(H2O)2]·4.5H2O (I) (H4Cydta = trans-1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid) and K2[Eu2III(pdta)2(H2O)2]·6H2O (II) (H4pdta = propylenediamine-N,N,N′,N′-tetraacetic acid) complexes are prepared by heat-refluxing and acidity-adjusting methods respectively, and their composition and structures are determined by elemental analyses and single crystal X-ray diffraction techniques. The complex I has a mononuclear structure, crystallizes in the triclinic crystal system with the P[`1]P\bar 1 space group; the central EuIII ion is eight-coordinated by a hexadentate Cydta ligand and two water molecules. The crystal data are as follows: a = 8.653(4) ?, b = 10.041(4) ?, c = 14.405(6) ?, α = 88.469(6)°, β = 74.892(6)°, γ = 88.256(7)°, V = 1207.5(9) ?3, Z = 1, D c = 1.731 g/cm3, μ = 2.669 mm−1, F(000) = 638, R = 0.0257, and wR = 0.0667 for 3807 observed reflections with I ≥ 2σ(I). The EuN2O6 part in the [EuIII(Cydta)(H2O)2] complex anion forms a pseudo-square antiprismatic polyhedron. The complex II is eight-coordinate as well; it is a binuclear structure that crystallizes in the monoclinic crystal system with the C 2/c space group; half of the central EuIII ion is coordinated by two nitrogen atoms from one hexadentate pdta ligand and six oxygen atoms from the same pdta ligand, one water molecule and carboxylic group from the neighboring pdta ligand respectively. The crystal data are as follows: a = 19.866(3) ?, b = 9.1017(12) ?, c = 21.010(3) ?, β = 104.972(2)°, V = 3670.1(9) ?3, Z = 8, D c = 2.046 g/cm3, μ = 3.710 mm−1, F(000) = 2240, R = 0.0213 and wR = 0.0460 for 4183 observed reflections with I ≥ 2σ(I). Otherwise, the two EuN2O6 parts in the [Eu2III(pdta)2(H2O)2]2− complex anion form a pseudo-square antiprismatic polyhedron.  相似文献   

18.
The crystal of [Ni(dien)2]2[Mn(NCS)6]·H2O was synthesized and the structure of its single crystal was determined by X-ray diffraction. The crystal is monoclinic system, space group P21/c with a=16.544(3),b=15.137(2), c=17.334(3)?, β=99.90(1)°, V=4276.3(12)?3, Z=4, Dc=1.479g·cm-3, Mr=951.55, F(000)=1998, μ=1.489mm-1, R=0.0399, Rw=0.0958. IR was also determined.  相似文献   

19.
In this work, the title complexes, NH4[ErIII(Cydta)(H2O)2] · 4.5H2O (I) (H4Cydta = trans-1,2-cyclo-hexanediamine-N,N,N′,N′-tetraacetic acid) and (NH4)2[Er2III(Pdta)2(H2O)2] · 2H2O (II) (H4Pdta= propylene-diamine-N,N,N′,N′-tetraacetic acid), were prepared, respectively, and their composition and structures were determined by elemental analyses and single-crystal X-ray diffraction techniques. Complex I selects a mononu-clear structure with pseudosquare antiprismatic geometry crystallized in the triclinic crystal system with space group $ P\bar 1 $ P\bar 1 and the central Er3+ ion is eight-coordinated by the hexadentate Cydta ligand and two water molecules. The crystal data are as follows: a = 8.568(3), b = 10.024(3), c = 14.377(4) ?, α = 88.404(4)°, β = 75.411(4)°, γ = 88.332(4)°, V = 1194.2(6) ?3, Z = 1, ρ c = 1.793 g/cm3, μ = 3.586 mm−1, F(000) = 648, R = 0.0257, and wR = 0.0667 for 4169 observed reflections with I ≥ 2σ(I). Complex II is eight-coordinated as well, which selects a binuclear structure with two pseudosquare antiprismatic geometry and crystallizes in the monoclinic crystal system with space group P21/n. The central Er3+ ion is coordinated by two nitrogens and four oxygens from one hexadentate Pdta ligand. Besides, two oxygens come from one carboxylic group of the neighboring Pdta ligand and one water molecule, respectively. The crystal data are as follows: a = 12.7576(8), b = 9.3151(6), c = 14.3278(9) ?, β = 96.1380(10)°, V = 1692.93(19) ?3, Z = 4, ρ c = 2.054 g/cm3, μ = 5.015 mm−1, F(000) = 1028, R= 0.0228, and wR = 0.0534 for 2984 observed reflections with I ≥ 2σ(I).  相似文献   

20.
A uranylcontaining compound [U(CO3)3(H2O)2]·2H2O has been synthesized under hydrothermal condition and characterized by X-ray single-crystal analysis. Crystal structural analysis indicates that this compound consists of three CO32- molecules, one U6+. The results reveal that the title compound presents a 3D frame work built up by O-H…O week hydrogen bonds interactions. The central uranium atom is eight-coordinated through three CO32- molecules and two H2O. The compound shows a coplanar hexagonal network structure, each hexagon containing a hexagonal hole with a water moleculet. CCDC: 737313.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号