首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The Ru(II) complexes cis-[Ru(L)Cl2] (C1-C3) of novel tetradentate NSNN ligands (L) {where L is C5H4N-CH2-S-C6H4NC(COCH3)-NN-C6H4X, and X is H (L1), CH3 (L2) and Br (L3)}, were synthesized and characterized by spectroscopy (IR, UV/vis and NMR), cyclic voltammetry and crystallography. The tetradentate ligands were isolated as the amidrazones H2L {where H2L is C5H4N-CH2-S-C6H4NH-C(COCH3)N-NH-C6H4X and X is H (H2L1), CH3 (H2L2) and Br (H2L3)} as shown by crystallography of H2L1, but oxidize to azoimines during the formation of the Ru(II) complexes. A crystallographic analysis of C1 showed that the Ru(II) centre is in a distorted octahedral coordination sphere in which the tetradentate ligand occupies three equatorial sites and one axial site (two azoimine nitrogens and a thio sulfur in the equatorial plane and an axial pyridine nitrogen) and two chlorides occupying axial and equatorial coordination sites. The Ru(II) oxidation state is greatly stabilized by the novel tetradentate ligand, showing Ru(III/II) couples ranging from 1.43 to 1.51 V. The absorption spectrum of C1 in acetonitrile was modelled by time-dependent density functional theory.  相似文献   

4.
New Schiff-base copper and cobalt complexes, [Cu(L1)], [Cu(L2)] and [Co(L1)], [Co(L2)] (where L1 = N-N′-bis(3,5-di-tert-butylsalicylaldimine)-1,4-cyclohexane bis(methylamine) and L2 = N-N′-bis(3,5-di-tert-butylsalicylaldimine)-1,8-diamino-3,6-dioxaoctane), were synthesized and characterized using elemental analysis, IR spectra, UV–Vis spectra, magnetic susceptibility measurements, 1H and 13C NMR spectroscopy, thermal analysis and molar conductance (ΛM). Their electro-spectrochemical properties were investigated using cyclic voltammetric (CV) and thin-layer spectroelectrochemical techniques in a dichloromethane solution (CH2Cl2). The CV of [Cu(L2)] showed a lower oxidation potential than that of [Cu(L1)] under the same experimental conditions. The oxidation wave (II) of [Cu(L2)] was accompanied by an EC process (II′), which was not observed for [Cu(L1)]. Also, [Cu(L2)] exhibited a reduction process, but [Cu(L1)] did not. These results indicate that the Cu(II) ion in [Cu(L2)] is coordinated by N2O4 donor sites while [Cu(L1)] presents a square-planar structure with N2O2 donor sites. Both oxidation processes for [Co(L1)] and [Co(L2)] are based on the cobalt center, and they are assigned to Co(II)/Co(III) couples. The spectroelectrochemical results indicate that the oxidized species of [Cu(L2)] is similar to that of [Cu(L1)], the only difference being that the absorption bands of the oxidized species for [Cu(L2)] shift to lower energy compared with those of [Cu(L1)] because of their different coordination environment. The geometry of [Cu(L2)] changed into square-planar after the complex was totally oxidized and the neutral complex was only recovered following the EC process, as observed from the CV of [Cu(L2)]. For the two cobalt complexes, the bands corresponding to the π → πtransitions disappeared and new bands with small red shifts and of lower intensity were observed during the oxidation process. These new bands are attributed to the LMCT transition as observed in the case of the oxidation processes of the cobalt complexes.  相似文献   

5.
Thioethers PhC2H4SMe, PhC3H6SiPr and MeSAllyl form substitutionally labile monomeric adducts (p-cymene)RuCl2(SRR′) (2a-c) upon treatment with the {(p-cymene)RuCl2}2 dimer (p-cymene = η6-MeC6H4iPr-1,4). Pure adducts were obtained by crystallization from CH2Cl2/Et2O, and 2a,c as well as the bis(thioether) complex (3) were studied by X-ray crystallography. The trichloro bridged diruthenium complex is formed as a byproduct in the preparation of 3 and was also crystallographically characterized. In solution, pure samples 2a-c equilibrate with free thioether and the dimeric starting complex 1. The amount of 1 present in these mixtures increases with increasing bulk of the thioether substituents. Attempts to thermally replace the cymene ligand by the dangling arene substituent of the thioether ligand of 2a,b failed. Complexes 2a-c as well as the dimethylsufide derivative 2d were studied by cyclic voltammetry and display a close to reversible (2a,c,d) or partially reversible (2b) oxidation near +0.85 V and an irreversible reduction at rather negative potential. New peaks observed after oxidation and reduction point to dissociation of the thioether ligand as the main decomposition pathway of the associated radical cations and anions.  相似文献   

6.
The synthesis and characterisation of three novel mononuclear ruthenium(II) complexes containing one of the following chiral auxiliary ligands: 2-amino-(4R)-phenyl-2-oxazoline (amphox), indanyl-2-amino-(4R,5S)-2-oxazoline (aminox) or indanyl-(2′-anilinyl)-(4R,5S)-2-oxazoline (aninox) is described using [Ru2Cl46-p-cym)2] (p-cym = 1-isopropyl-4-methylbenzene) as the Ru starting material. The new complexes have been identified as the neutral derivatives [RuCl26-p-cym)(amphox-κ1Nox)] (1), [RuCl26-p-cym)(aminox-κ1Nox)] (2) and the salt [RuCl(η6-p-cym)(aninox-κ2N,N′)]Cl (3). These materials have been fully characterised (elemental analysis, NMR, IR, conductance, MS, etc.) and, in the case of 2 and 3, structurally elucidated in the solid-state using single crystal X-ray diffraction methods. All three complexes show good catalytic activity (max. conversion >99%, TOF = 424 h−1) but only modest enantio-selectivity (max. ee = 40%) for the transfer hydrogenation reaction of acetophenone with isopropyl alcohol. The complexes were also tested in an asymmetric Diels-Alder reaction involving cyclopentadiene and acrolein (max. conversion >99%, TOF = 42 h−1). In this case, the diastereo-selectivity was good to moderate (max. de = 84%), but the ee values were poor (max. ee = 12%).  相似文献   

7.
We report electrochemical and spectroelectrochemical investigations on the butadienediyl-bridged diruthenium complexes [{Ru(PPh3)2(CO)Cl}2(μ-C4H4)] (1), [{Ru(PEt3)3(CO)Cl}2(μ-C4H4)] (2), and [{Ru(PPh3)2(CO)Cl(NC5H4COOEt-4)}2(μ-C4H4)] (3). All these complexes are oxidized in two consecutive one-electron steps separated by 315 to 680 mV, depending on the co-ligands. The first oxidation is a chemically and electrochemically reversible process whereas the second varies from nearly reversible to irreversible at room temperature. We have generated and investigated the mixed-valence monocations and observed CO band shifts of ca 25 cm−1 and the appearance of new bands in the visible regime at ca 720 to 800 and 430 to 450 nm. The lower-energy band which tails into the near infrared has been assigned as a charge-resonance (or intervalence charge-transfer) absorption and used to estimate the electronic coupling parameter H AB. Our investigations point to valence delocalization for 2 + , and nearly delocalized behavior for 1 + and 3 + . Even the complex with the smallest potential splitting is, however, fully delocalized on the longer ESR timescale, as is evident from the coupling pattern of the solution spectrum. Overall IR band shifts on full oxidation and the hyperfine splittings for 1 + argue for charge and spin delocalization onto the bridging C4H4 ligand. This issue has also been addressed by quantum chemical calculations employing DFT methods. Geometry optimizations at each oxidation level reveal inversion of the C–C bond pattern from a short–long–short to a long–short–long alteration and a bis(carbenic) structure at the dication stage. All spectroscopic features such as IR band shifts, average g-values and g-tensor anisotropies are fully reproduced by the calculations. Presented at the 3rd Chianti Electrochemistry Meeting, July 3.–9.2004, Certosa di Pontignano, Italy  相似文献   

8.
The complexes trans-[Os(CCC6H4-4-CCR)Cl(dppe)2] (R = SiPri31, H 2), trans,trans-[(dppe)2ClOs(CCC6H4-4-CC)RuX(dppe)2] (X = Cl 3, CCC6H4-4-CCSiPri34), trans-[Os(CCC6H4-4-CCC6H4-4-CCR)Cl(dppe)2] (R = SiPri35, H 6), and trans,trans-[(dppe)2ClOs(CCC6H4-4-CCC6H4-4-CC)RuCl(dppe)2] (7) have been synthesized, and the identities of 1, 2, and 6 confirmed by single-crystal X-ray diffraction studies. Cyclic voltammetry shows that the mononuclear complexes 1, 2, 5, and 6 are oxidized at potentials within a narrow range (0.45-0.49 V), in processes centered on the osmium ethynyl neighbourhood and for simplicity assigned as OsII/III, while the heterobinuclear complexes 3, 4, and 7 exhibit lower oxidation potentials for OsII/III and a second oxidation process assigned in a similar fashion to RuII/III; the difference in potential between the Os- and Ru-localized processes decreases as the π-bridge is lengthened. UV-vis-NIR spectroelectrochemical studies on 1 and 5 reveal the appearance on oxidation of a low-energy band ascribed to chloro to metal-ethynyl charge transfer. Osmium-centered oxidation at the heterobinuclear complexes 4 and 7 results in appearance of a low-energy band, which blue-shifts and increases in intensity on further oxidation to 42+ and 72+.  相似文献   

9.
{Os(bpy)2}2+ and {Ru(CN)4}2− mononuclear and binuclear complexes with ligands 2,3-di-(2-pyridyl)quinoxaline (dpq) and dipyrido[2,3-a:3′,2′-c]phenazine (ppb) have been prepared. For the binuclear complexes a splitting in oxidation potentials is observed consistent with the formation of mixed-valence species with comproportionation constants (Kcom) ranging from 2.5 × 104 to 1.8 × 106. The electronic absorption spectra of the mixed-valence species reveal IVCT transitions in the near infrared region. The absorption maximum for the IVCT band ranges from 5800 to 9980 cm−1 and the extinction coefficients from 80 to 6300 M−1 cm−1. In general the {Os(bpy)2}2+ complexes show larger Kcom values and more intense IVCT bands than the corresponding {Ru(CN)4}2− complexes.  相似文献   

10.
Reaction of α-amino acids (HL) with [Ru(PPh3)3Cl2] in the presence of a base afforded a family of complexes of type [Ru(PPh3)2(L)2]. These complexes are diamagnetic (low-spin d6, S=0) and show ligand-field transitions in the visible region. 1H and 31P NMR spectra of the complexes indicate the presence of C2 symmetry. Cyclic voltammetry on the [Ru(PPh3)2(L)2] complexes show a reversible ruthenium(II)–ruthenium(III) oxidation in the range 0.30–0.42 V vs. SCE. An irreversible ruthenium(III)–ruthenium(IV) oxidation is also displayed by two complexes near 1.5 V vs. SCE.  相似文献   

11.
A new half unit and some new symmetrical or asymmetrical VO(IV) and Cu(II) complexes of tetradentate ONNO Schiff base ligands were synthesized. The probable structures of the complexes have been proposed on the basis of elemental analyses and spectral (IR, UV–Vis, electron paramagnetic resonance, ESI-MS) data. VO(IV) and Cu(II) complexes exhibit square pyramidal and square-planar geometries, respectively. The complexes are non-electrolytes in dimethylformamide (DMF) and dimethylsulfoxide. Electrochemical behaviors of the complexes were studied using cyclic voltammetry and square wave voltammetry. Half-wave potentials (E 1/2) are significantly influenced by the central metal and slightly influenced by the nature of substituents on salen. While VO(IV) complexes give VOIV/VOV redox couples and a ligand-based reduction process, Cu(II) complexes give only a ligand-based reduction. In situ spectroelectrochemical studies were employed to determine the spectra of electrogenerated species of the complexes and to assign the redox processes. The g-values were calculated for all these complexes in polycrystalline state at 298?K and in frozen DMF (113?K). The evaluated metal–ligand bonding parameters showed strong in-plane σ-bonding for some Cu(II) complexes.  相似文献   

12.
Pseudo-para[2.2]paracyclophane- and [2.1]orthocyclophane-bridged diruthenium complexes 2 and 3 with two interlinked electroactive styryl ruthenium moieties have been prepared and investigated. Both complexes undergo two reversible consecutive one-electron oxidation processes which are separated by 270 or 105 mV. Stepwise electrolysis of the neutral complexes to first the mixed-valent radical cations and then the dioxidized dications under IR monitoring reveal incremental shifts of the charge-sensitive Ru(CO) bands and allow for an assignment of their radical cations as moderately or very weakly coupled mixed-valent systems of class II according to Robin and Day. Ground-state delocalization in the mixed-valent forms of these complexes as based on the CO band shifts is considerably larger for the “closed” paracyclophane as for the “half-open” orthocyclophane. Experimental findings are backed by the calculated IR band patterns and spin density distributions for radical cations of slightly simplified model complexes 2Me+ and 3Me+ with the PiPr3 ligands replaced by PMe3. Radical cations 2+ and 3+ feature a characteristic NIR band that is neither present in their neutral or fully oxidized forms nor in the radical cation of the monoruthenium [2.2]paracyclophane complex 1 with just one vinyl ruthenium moiety. These bands are thus assigned as intervalence charge-transfer (IVCT) transitions. Our results indicate that, for the radical cations, electronic coupling “through-space” via the stacked styrene decks is significantly more efficient than the “through-bond” pathway.  相似文献   

13.
The complexes (μ3-L1/L2)[Ru(acac)2]3, acac = 2,4-pentanedionato, L1 = 2,3,8,9,14,15-hexachlorodiquinoxalino[2,3-a:2′,3′-c]phenazine and L2 = 2,3,8,9,14,15- hexamethyldiquinoxalino[2,3-a:2′,3′-c]phenazine, undergo stepwise one-electron oxidation involving a total of three electrons and stepwise one-electron reduction with three (L2) or four electrons (L1). All reversibly accessible states were characterized by UV–Vis–NIR spectroelectrochemistry. Oxidation leads to mixed-valent intermediates {(μ3-L)[Ru(acac)2]3}+ and {(μ3-L)[Ru(acac)2]3}2+ of which the RuIIIRuIIRuII combinations exhibit higher comproportionation constants Kc than the RuIIIRuIIIRuII states – in contrast to a previous report for the unsubstituted parent systems {(μ3-L3)[Ru(acac)2]3}+/2+, L3 = diquinoxalino[2,3-a:2′,3′-c]phenazine. No conspicuous inter-valence charge transfer absorptions were observed for the mixed-valent intermediates in the visible to near-infrared regions. The monocations and monoanions were characterized by EPR spectroscopy, revealing rhombic ruthenium(III) type signals for the former. Electron addition produces ruthenium(II) complexes of the reduced forms of the ligands L, a high resolution EPR spectrum with 14N and 35,37Cl hyperfine coupling and negligible g anisotropy was found for {(μ3-L1)[Ru(acac)2]3}. DFT calculations of (μ3-L1)[Ru(acac)2]3 confirm several ligand-centered low-lying unoccupied MOs for reduction and several metal-based high-lying occupied MOs for electron withdrawal, resulting in low-energy metal-to-ligand charge transfer (MLCT) transitions.  相似文献   

14.
Mononuclear cobalt phthalocyanine (CoPc) substituted at the non-peripheral 8 and peripheral positions 9 with 1,1′-binaphthyl-8,8′-diol and ball-type dinuclear Co2Pc2 substituted at the non-peripheral 10 and peripheral 11 positions with the same substituent are reported. The complexes with 1,1′-binaphthol-bridges were prepared from the corresponding phthalonitriles 4-7. The effects of the position of substituent on spectral, electrochemical and spectroelectrochemical properties of these complexes were also explored. The mononuclear complexes 8 and 9 exhibited one metal reduction, one ring reduction and one ring oxidation. The redox properties of the ball-type complexes 10 and 11 exhibited two reduction processes assigned to [(CoIPc−2)2]2−/[(CoIPc−3)2]4− (I), (CoIIPc−2)2/[(CoIPc−2)2]2− (II) and one oxidation process assigned to [(CoIIIPc−2)2]2+/CoIIPc−2)2 (III). The ball-type complexes are much easier to oxidize and more difficult to reduce than the corresponding monomers 8 and 9.  相似文献   

15.
《印度化学会志》2021,98(4):100048
The reaction of Ru(κ2C,O-RL)(PPh3)2(CO)Cl, 1 with excess sodium salt of pyridine-2-carboxylic acid (Napic) furnishes the complexes of the type Ru(κ1C-RL)(PPh3)2(CO) (pic), 2(R) with excellent yield (κ2C,O-RL is C6H2O-2-CHNHC6H4R(p)-3-Me-5, κ1C-RL is C6H2OH-2-CHNC6H4R(p)-3-Me-5 and R is Me, OMe, Cl). The chelation of pic is attended with the cleavage of Ru–O and Ru–Cl bonds and iminium–phenolato→imine–phenol prototropic shift. The 1 ​→ ​2 conversion is irreversible and the type 2 species are thermodynamically more stable than the acetate, nitrite and nitrate complexes of 1. The spectral (UV–vis, IR, 1H NMR) and electrochemical data of the complexes are reported. In dichloromethane solution the complexes display one quasi–reversible RuIII/RuII cyclic voltammetric response with E1/2 in the range 0.72–0.80 ​V vs. Ag/AgCl. The crystal and molecular structure of Ru(κ1C-MeOL)(PPh3)2(CO)(pic)∙CH3CN is reported which revealed distorted octahedral RuC2P2NO coordination sphere. The pairs (P, P), (C, O) and (C, N) define the three trans directions. The electronic structures of the complexes are also scrutinized by density functional theory (DFT) and time–dependent density functional theory (TD–DFT) calculations.  相似文献   

16.
Treatment of the ruthenium chloride, CpRu(PPh3)2Cl, with the alkynyldithiocarboxylate anions, , in refluxing THF affords the chelate complexes CpRu(PPh3)(κ2S,S-S2CCCR) (1) (R = But (a), Bun (b), Ph (c), SiMe3 (d)) in high yield. The room temperature reaction of the solvated species, [CpRu(PPh3)2(NCPh)]+, with the alkynyldithiocarboxylate anions, , produces the chelate complexes 1 and the mono-coordinated complexes CpRu(PPh3)2S-S2CCCR) (2). Complexes 2 are converted to 1 in solution so that they were characterized spectroscopically.  相似文献   

17.
Three cis-Ru(dppm)2XY complexes (XY?=?C2O4, 1; X?=?Cl, Y?=?N3, 2; X?=?Y?=?N3, 3) were prepared by reactions of cis-Ru(dppm)2Cl2 with (NH4)2C2O4, a mixture of NaN3 and NaPF6, and only NaN3, respectively, while 3 could also be obtained from further reaction of 2 with NaN3 undergoing a facile chloride abstraction. All complexes have been characterized by IR, NMR, UV–vis, and luminescence spectroscopic analyses as well as X-ray diffraction studies. Of these structures, 1 shows oxalate coordinates to Ru as a chelating ligand, while 2 displays Ru and azide linear, and 3 gives two azide groups cis to each other, which are different from two substituting ligands commonly lying in trans positions in Ru(P–P)2 complexes by using cis-Ru(dppm)2Cl2 as a precursor.  相似文献   

18.
Dinuclear arene ruthenium complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene?=?C6H6; p iPrC6H4Me; C6Me6) and monomeric cyclopentadienyl complexes [(η5-Cp)Ru(PPh3)2Cl] (Cp?=?cyclopentadienyl) react with polypyridyl nitrogen ligands L1 (3-(pyridin-2-yl)-1H-1,2,4-triazole) and L2 (1,3-bis(di-2-pyridylaminomethyl)benzene) in methanol to afford cationic mononuclear compounds [(η6-arene)Ru(L1)Cl]+ (arene?=?C6H6, 1; p iPrC6H4Me, 2; C6Me6, 3), [(η6arene)Ru(L2)Cl]+ (arene?=?C6H6, 4; p iPrC6H4Me, 5; C6Me6, 6), [(η5-Cp)Ru(L1)(PPh3)]+ (7), and [(η5Cp)Ru(L2)(PPh3)]+ (8). All cationic mononuclear compounds were isolated as their hexafluorophosphate salts and characterized by elemental analyses, NMR, and IR spectroscopic methods and some representative complexes by UV-Vis spectroscopy. The solid state structures of two derivatives, [6]PF6 and [7]PF6, have been determined by the X-ray structure analysis.  相似文献   

19.
The Pd(0)/Cu(I)-catalysed reactions between Co33-CBr) (CO)9 and W(CCCCH)(CO)3Cp gives the C5 complex {Cp(OC)3W}CCCCC{Co3(CO)9} (2). Similarly, Co33-CBr)(μ-dppm)(CO)7 and W(CCCCH)(CO)3Cp or Ru(CCCCH)(dppe)Cp* give {Cp(OC)3W}CCCCC{Co3(μ-dppm)(CO)7} and {Cp*(dppe)Ru}CCCCC{Co3(μ-dppmn)(CO)7} (5). An attempt to prepare a C3 analogue from Ru(CCH)(PPh3)2Cp and Co33-CBr)(CO)9 gave instead the acyl derivative {Cp(Ph3P)2Ru}CCC(O)C{Co3(CO)8(PPh3)} (7). The X-ray structures of 2, 5 and 7 are reported: the C5 chains in 2 and 5 have an essentially unperturbed -CC-CC-C formulation.  相似文献   

20.
The Schiff base 2-pyridine–carboxaldehyde 4-dimethylaminobenzoylhydrazone (HL, 1) was prepared by reacting 2-pyridine–carboxaldehyde and 4-dimethylaminobenzoylhydrazine in a 1:1 molar ratio in methanol. Reaction of HL (1) with Cu(O2CCH3)2·H2O (in a 1:1 molar ratio) in methanol afforded a dinuclear copper(II) complex, [Cu2(μ-O2CCH3)2L′2]·2H2O (2). The azomethine functionality (---CH=N---) of 1 is converted to imidate (---C(OMe)=N---) in the complexed ligand L′. Molecular structures of both 1 and 2 were determined by X-ray crystallographic studies. The dinuclear molecule of 2 is centrosymmetric and contains two monoatomic bridging acetate groups. Each copper(II) centre is in a square-pyramidal N2O3 coordination sphere. The ligand, L′ coordinates the metal ion via the pyridine-N, the imidate-N, and the deprotonated amide-O atoms. One of the acetate oxygen atoms completes the N2O2 square-plane. The oxygen of the symmetry-related acetate fills the apical coordination site. Structural parameters are consistent with both copper ions being in a +2 oxidation state. The room temperature magnetic moment is 1.89 μB (per Cu). In powder phase the complex displays an axial EPR spectrum at 298 K. The complex is nonconducting in methanol solution. The electronic spectrum shows a ligand field absorption at 680 nm and charge transfer bands in the range 426–215 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号