首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The novel tridentate chiral ligand 2,6-bis{[(1R,2S,4R)-2-hydroxy-1,3,3-trimethyl-bicyclo[2.2.1]hept-2-yl]}pyridine (1) was readily prepared by reaction of 2,6-dilithiopyridine with (R)-(−)-fenchone. Reaction of 1 with [MoO2(acac)2] resulted in the formation of the new metal-oxo five-coordinated complex [MoO2(ONO)] (2) [ONO = (1 – 2H)]. The reactivity of 2 has been studied and the derivatives [MoS2(ONO)] (3) and [MoO(O2)(ONO)] (4) were prepared. The compounds 14 have been characterised by 1H and 13C{1H} NMR, microanalysis and IR spectroscopy. Furthermore, the molecular structures of 1 and 2 have been determined by single-crystal X-ray diffraction. The behaviour of 2 as catalyst in oxotransfer and in nucleophilic substitution of propargylic alcohols reactions has been tested.  相似文献   

2.
Magdy A. Ibrahim 《Tetrahedron》2009,65(36):7687-2859
4-Hydroxycoumarin-3-carboxaldehyde (5) was obtained from chromone-3-carboxaldehyde (1) via chromone-3-carboxamide (2) and 3-aminomethylene-2H-chroman-2,4-dione (3). 3-Alkylaminomethylenechroman-2,4-diones (7,8) were obtained from the reaction of primary aliphatic amines with chromone-3-carboxamide (2). Treatment of chromone-3-carboxamide with sodium methoxide gives 3-(2-hydroxybenzoyl)-2H-chromeno[2,3-b]pyridine-2,5(1H)-dione (9).  相似文献   

3.
One-pot reaction of [CpCo(CO)2], elemental sulfur with some heterocycle-substituted alkynes (R-CC-HET) produced [CpCo(dithiolene)] complexes with 2PyOBn (2), with both 2PyOBn and 2-hydroxy-2-propyl groups (C(OH)Me2) (5), both 2Py and C(OH)Me2 (8), both 4Py and C(OH)Me2 (11), and with 4Py substituent (13). A deprotection of benzyl group (Bn) from 2 with trimethylsilyl iodide formed [CpCo(dithiolene)] with 2-pyridonyl substituent (3). Heating reaction of 8 without any base resulted in the C(OH)Me2 group elimination to form the 2-pyridylethylenedithiolate complex (9), but 11 underwent only dehydration at the C(OH)Me2 under heating. While the preparation of 5, the benzyl free complex (6) was obtained as a main product. 6 has a dithiolene-fused tricyclic pyridone skeleton. The structures of 3, 5, 6, 8, and 11 were determined by X-ray diffraction studies. Intramolecular OH?N(2Py) hydrogen bondings are found in 5 and 8, and an intermolecular OH?N(4Py) one is found in 11 at solid state. In the 2-pyridonyl complex 3, intermolecular NH?O and CH(dithiolene)?O hydrogen bondings are observed. 8 showed an intermolecular Cp?Cp face-to-face interaction. The tricyclic complex 6 exhibited lower energy electronic absorption (λmax = 668 nm) compared with the others (λmax = 562-614 nm), due to an extended π-conjugation of aromatic cobaltadithiolene ring.  相似文献   

4.
5.
Schiff base N,N′-bis(salicylidene)-p-phenylenediamine (LH2) complexed with Pt(en)Cl2 and Pd(en)Cl2 provided [Pt(en)L]2 · 4PF6 (1) and Pd(Salen) (2) (Salen = N,N′-bis(salicylidene)-ethylenediamine), respectively, which were characterized by their elemental analysis, spectroscopic data and X-ray data. A solid complex obtained by the reaction of hexafluorobenzene (hfb) with the representative complex 1 has been isolated and characterized as 3 (1 · hfb) using UV–Vis, NMR (1H, 13C and 19F) data. A solid complex of hfb with a reported Zn-cyclophane 4 has also been prepared and characterized 5 (4 · hfb) for comparison with complex 3. The association of hfb with 1 and 4 has also been monitored using UV–Vis and luminescence data.  相似文献   

6.
New oxathioethers macrocycles have been synthesized and characterized. Each macrocycle consists in structurally defined ether and thioether moieties and an exocyclic double-bond (2ac) or a hydroxymethyl group (3ac). Macrocycles (2ac) have been synthesized by reaction of dianions of thioethers diols (1ac) with 3-chloro-2-chloromethylprop-1-ene. Their hydroboration/oxidation led to corresponding primary alcohols (3ac). Structures of compounds (2b) and (3a) have been determined by X-ray diffraction. The reactivity of the hydroxyl group allowed the preparation of oxathioethers macrocycles bearing a polyether chain or a benzyl group (4a,b) and the synthesis of new bicyclic sandwich-type compounds (5a,b). The ability of these functionalized macrocycles to coordinate to palladium has been investigated.  相似文献   

7.
A facile method has been developed for the synthesis of 4H-chromene-3-carboxylates 3ad by the nucleophilic substitution reaction of 2-hydroxy-2H-chromene-3-carboxylates 2ad with triethylsilane in the presence of BF3·O(C2H5)2. Cyclocondensation of 4H-chromene-3-carboxylates 3ad with benzylamines 4ad afforded a series of 2,3-dihydrochromenopyrrolones 5ap and with propargylamine afforded 2-propynyl-2,3-dihydrochromenopyrrolones 6ad. Click reaction of 6ad with benzyl azides 7ad provided a series of 1H-1,2,3-triazolylmethyl-2,3-dihydrochromenopyrrolones 8ap. Thus synthesized compounds 3ad, 5ap, 6ad, and 8ap are novel heterocyclic compounds and being reported for the first time.  相似文献   

8.
The reaction of boron heterocycles 1 and 2 with n-butyl lithium and alkyl halides led to (N→B) phenyl[N-alky-N-(2-alkyl)aminodiacetate-O,O′,N]boranes 36(ab), 7(b) and 9(b), where alkyl can be in exo and/or endo position, and phenyl[N-alkyl-N-(2-alkyl)aminodiacetate-O,O′,N]boranes 7(c) and 8(c) isomers, which do not display the intramolecular N→B coordination bond. The existence of steric interactions between N-benzyl and the alkyl group at 2 position was indicated by 1H and 13C NMR, while, the δ(11B) values confirm the tetrahedral and trigonal environment of the 11B nucleus in these compounds. Moreover, the compounds were characterized by COSY, HETCOR and homonuclear proton decoupling experiment. The study of the intramolecular N→B coordination by dynamic NMR afforded a ΔG‡ value of 81.09 kJ/mol for compound 6(b).  相似文献   

9.
Complete 1H and 13C NMR assignments of the (di-)cyclopenta-fused pyrene congeners, cyclopenta[cd]- (2), dicyclopenta[cd,fg]- (3), dicyclopenta[cd,jk]- (4) and dicyclopenta[cd,mn]pyrene (5), respectively, are achieved using two-dimensional (2D) NMR spectroscopy. The experimental 13C chemical shift assignments are compared with computed ab initio CTOCD-PZ2/6-31G∗∗13C chemical shifts; a satisfactory agreement is found. Substituent-induced chemical shifts in the pyrene core induced by annelation of cyclopenta moieties are discussed. Effects of dicyclopenta topology on electronic structure are illustrated for 3-5.  相似文献   

10.
Two polar phosphinoferrocene ligands, 1′-(diphenylphosphino)ferrocene-1-carboxamide (1) and 1′-(diphenylphosphino)ferrocene-1-carbohydrazide (2), were synthesized in good yields from 1′-(diphenylphosphino)ferrocene-1-carboxylic acid (Hdpf) via the reactive benzotriazole derivative, 1-[1′-(diphenylphosphino)ferrocene-1-carbonyl]-1H-1,2,3-benzotriazole (3). Alternatively, the hydrazide was prepared by the conventional reaction of methyl 1′-(diphenylphosphino)ferrocene-1-carboxylate with hydrazine hydrate, and was further converted via standard condensation reactions to three phosphinoferrocene heterocycles, viz 2-[1′-(diphenylphosphino)ferrocen-1-yl]-1,3,4-oxadiazole (4), 1-[1′-(diphenylphosphino)ferrocen-1-carbonyl]-3,5-dimethyl-1,2-pyrazole (5), and 1-[1′-(diphenylphosphino)ferrocene-1-carboxamido]-3,5-dimethylpyrrole (6). Compounds 1 and 2 react with [PdCl2(cod)] (cod = η22-cycloocta-1,5-diene) to afford the respective bis-phosphine complexes trans-[PdCl2(L-κP)2] (7, L = 1; 8, L = 2). The dimeric precursor [(LNC)PdCl]2 (LNC = 2-[(dimethylamino-κN)methyl]phenyl-κC1) is cleaved with 1 to give the neutral phosphine complex [(LNC)PdCl(1P)] (9), which is readily transformed into a ionic bis-chelate complex [(LNC)PdCl(12O,P)][SbF6] (10) upon removal of the chloride ligand with Ag[SbF6]. Pyrazole 5 behaves similarly affording the related complexes [(LNC)PdCl(5P)] (12) and [(LNC)PdCl(52O,P)][SbF6] (13), in which the ferrocene ligand coordinates as a simple phosphine and an O,P-chelate respectively, while oxadiazole 4 affords the phosphine complex [(LNC)PdCl(4P)] (11) and a P,N-chelate [(LNC)PdCl(42N3,P)][SbF6] (14) under similar conditions. All compounds were characterized by elemental analysis and spectroscopic methods (multinuclear NMR, IR and MS). The solid-state structures of 1⋅½AcOEt, 2, 7⋅3CH3CN, 8⋅2CHCl3, 9⋅½CH2Cl2⋅0.375C6H14, 10, and 14 were determined by single-crystal X-ray crystallography.  相似文献   

11.
A new indole alkaloid, 7β-hydroxy-7H-mitraciliatine (1) and a new oxindole alkaloid, isospeciofoleine (2) together with nine known alkaloids were isolated from Mitragyna speciosa and characterized by NMR, CD, and MS spectroscopic data analyses. The 1H and 13C NMR spectroscopic data of isospeciofoline (3), isorotundifoline (4), paynantheine (5), and 3-isopaynantheine (6) were also reported for the first time.  相似文献   

12.
13.
The reaction of acetonitrile (15) and mixed acetonitrile/water 1:1 (69) solutions containing the cyanide-bearing [Fe(bipy)(CN)4] building block (bipy = 2,2′-bipyridine) and the partially blocked [Ln(bpym)]3+ cation (Ln = lanthanide trivalent cation and bpym = 2,2′-bipyrimidine) has afforded two new families of 3d–4f supramolecular assemblies of formula [Ln(bpym)(NO3)2(H2O)3][Fe(bipy)(CN)4] · H2O · CH3CN [Ln = Sm (1), Gd (2), Tb (3), Dy (4) and Ho (5)] and [Ln(bpym)(NO3)2(H2O)4][Fe(bipy)(CN)4] [Ln = Pr (6), Nd (7), Sm (8), Gd (9)]. They crystallize in the P21/c (15) and P2/c (69) space groups and their structures are made up of [Fe(bipy)(CN)4] anions (19) and [Ln(bpym)(NO3)2(H2O)n]+ cations [n = 3 (15) and 4 (69)] with uncoordinated water and acetonitrile molecules (15) which are interlinked through an extensive network of hydrogen bonds and π–π stacking into three-dimensional motifs. Both families have in common the occurrence of the low-spin iron(III) unit [Fe(bipy)(CN)4] where two bipy–nitrogen and four cyanide–carbon atoms build a somewhat distorted octahedral surrounding around the iron atom [Fe–N = 1.980(3)–1.988(3) Å (15) and 1.988(2)–1.992(2) Å (69); Fe–C = 1.904(5)–1.952(4) Å (15) and 1.911(2)–1.948(3) Å (69)]. The main structural difference between both families concerns the environment of the lanthanide atom which is nine- (15)/10-coordinated (69) with a chelating bpym, two bidentate nitrate and three (15)/four (69) water molecules building distorted monocapped (15)/bicapped (69) square antiprisms. This different lanthanide environment is at the origin of the different hydrogen bonding pattern of the two families of compounds.  相似文献   

14.
NMR methods, including one- and two-dimensional techniques (at 7.05 T) for 1H, 13C and 19F, have been applied to studies of hindered rotations and magnetic anisotropy in some crowded Diels-Alder adducts of phencyclone (1). Symmetrically substituted N-aryl maleimides (2) bearing numerous halogens on the N-aryl ring, were employed as dienophiles to form the target adducts (3). The maleimides included: N-(4-bromo-2,6-difluorophenyl)maleimide (2a); N-(2,3,5,6-tetrafluorophenyl)maleimide (2b); N-(4-bromo-2,3,5,6-tetrafluorophenyl)maleimide (2c); N-(2,3,4,5,6-pentachlorophenyl)maleimide (2d); and N-(2,4,6-tribromophenyl)maleimide (2e). Maleimides (2a-2c) were prepared from the precursor N-aryl maleamic acids (5a-5c). Ambient temperature fluorine-19 NMR of these maleamic acids in d6-acetone showed substantial unusual peak broadening consistent with intermediate exchange rate processes, which may correspond to the N-aryl rotation process. Maleimides (2d) and (2e) were produced in one step from pentachloroaniline or 2,4,6-tribromoaniline, respectively, and maleic anhydride with anhydrous ZnCl2 at ca. 200 °C. For the adducts (3), we observed slow exchange limit spectra on the 1H, 13C, [and 19F, for (3a-3c)] NMR timescales for the rotation of the unsubstituted bridgehead phenyls about the C(sp3)C(sp2) bonds, and for the rotations of the N-aryl rings about the N(sp2)C(aryl sp2) bonds. Ab initio calculations for geometry optimizations at the Hartree-Fock level with 6-31G* (or LACVP*) basis sets were performed for the adducts. We believe that this is the first report of detailed 1H, 13C, and 19F NMR data for a substantial collection of N-aryl maleamic acids, maleimides and their phencyclone adducts bearing multiple fluorines or other halogens directly on the N-aryl ring, together with complementary quantitative geometric parameters from high-level HF/6-31G* (or LACVP*) calculations.  相似文献   

15.
The reactions of hexachlorocyclotriphosphazatriene, N3P3Cl6, with N-alkyl-N-ferrocenylmethylethylene diamines, FcCH2NH(CH2)2NHR1 [R1 = Me (1) and Et (2)], and sodium [3-(N-ferrocenylmethylamino)-1-propanoxide] (3) produce spirocyclic monoferrocenyl tetrachlorophosphazenes (1a3a). The tetrapyrrolidinophosphazenes (1b3b) are prepared from the reactions of corresponding phosphazenes (1a3a) with excess pyrrolidine. The reaction of 1a with excess morpholine affords geminal-morpholino phosphazene (1c), whilst the reactions of 2a and 3a give diethylaminotrimorpholino (2c) and fully substituted morpholino products (3c), respectively. The structural investigations of the compounds are examined by Fourier transform IR, MS, 1H, 13C, 31P NMR, DEPT, HETCOR, and HMBC techniques. The crystal structures of 3b and 3c are determined using X-ray crystallography. Cyclic voltammetric and chronoamperometric data show that compounds 1a3a, 1b3b, and 1c3c exhibit electrochemically reversible one-electron oxidation of Fc redox centers which are hardly affected by the substituents on the phosphazene ring. The compounds 1b, 2b, 3b, and 3c are screened for antibacterial activities against Gram-positive and Gram-negative bacteria and for antifungal activities against yeast strains. In addition, the antituberculosis activities (in vitro) of these compounds are evaluated against INH-susceptible reference strain M. tuberculosis H37Rv, and six multi-drug resistant clinical M. tuberculosis isolates. Compound 2b is found to be the most active against the susceptible the reference strain. In addition, 1b, 2b, and 3c are active against all the multidrug-resistant clinical isolates at the highest concentrations. Gel electrophoresis data indicate that the compounds promote the formation of strand breaks in plasmid DNA. Almost all the concentrations lost of supercoiled DNA suggests that the compound 3b is very efficient plasmid-modifier. The compounds inhibit BamHI cleavage of pUC18 DNA while restricting HindIII.  相似文献   

16.
The synthesis of novel bulky tris[dimethyl(ethyl/benzyl/p-tolyl/α-naphthyl)silylmethyl]stannanes (1-4) is described. Alkylation of SnCl4 with Me2(ethyl/p-tolyl)SiCH2MgBr (10-11) gave mainly the triorganotin chlorides [(Me2(ethyl/p-tolyl)SiCH2)]3SnCl 14 and 15, which were isolated by silica gel chromatography. Reduction of 14 and 15 with LiAlH4 in THF gave the corresponding triorganotin hydrides 1 and 2, respectively. [Me2(benzyl/α-naphthyl)SiCH2]3SnCl 16 and 17, generated by the alkylation of SnCl4 with Me2(benzyl/α-naphthyl)SiCH2MgBr 12 and 13, were inseparable from the minor product [Me2(benzyl/α-naphthyl)SiCH2]2SnCl218 and 19, respectively. Treatment of the mixtures of 16/18 and 17/19 with NaOH furnished the corresponding mixtures of stannoxanes, from which the hexakisdistannoxanes [Me2(benzyl/α-naphthyl)SiCH2]6Sn2O 20 and 22 were isolated from the minor dialkyltin oxide derivatives [Me2(benzyl/α-naphthyl)SiCH2]2SnO in good yields. Reduction of 20 and 22 with BH3 in THF gave [Me2(benzyl/α-naphthyl)SiCH2]3SnH (3 and 4), respectively in good yields. 1H, 13C, 119Sn, 29Si NMR characteristics of the newly synthesized compounds are included.  相似文献   

17.
Three new 1,2-dihydro-1-oxabenz[a]azulen-2-one derivatives, 1a (R1=H, R2=Me), 1b (R1=H, R2=Ph), and 1c (R1=COOEt, R2=Me), have been synthesized by the reaction of 2-hydroxyazulene (2a) and its 1-ethoxycarbonyl derivative 2b with ethyl acetoacetate (3a) or ethyl benzoylacetate (3b) in the presence of aluminum chloride. To our knowledge, these are the first examples of this type of compound, although the yield of the products is low in some cases. Their electronic properties were studied in detail utilizing the analyses of 1,2-dihydro-1-oxabenz[a]azulen-2-one derivative 1a by the spectroscopic and voltammetric analyses. The analyses revealed that the fused α-pyrone system lowers both the HOMO and the LUMO energies, relative to those of parent azulene (10), but has much pronounced effect on the LUMO, consequently, leading to decrease in HOMO–LUMO gap, compared with those of 10. These results should be attracted to the development of amphoteric redox materials. Reactivity toward electrophilic reagents was also examined by bromination and Vilsmeier–Haack formylation reactions of 1a. To evaluate the scope of the reaction products we have examined Sonogashira cross-coupling reaction of the bromination products with trimethylsilylacetylene and conversion of the formylation product to dibromoolefin by the reaction with phosphorous ylide prepared with CBr4 and Ph3P. Effective extension of the π-electron system in the ethynyl products has been revealed by the spectroscopic analysis. These reaction products would be attracted to the application as a terminal group for electronic applications.  相似文献   

18.
Two coordination compounds of palladium(II) with N-allylimidazole (l) of the general formula [PdL4]Cl2 · 3H2O (1) and trans-[PdL2Cl2] (2) have been synthesized. The crystal and molecular structure of complexes 1 and 2 was established by single-crystal X-ray diffraction analysis. The X-ray structural data were supplemented by solid-state 13C NMR measurements (CP MAS and PASS 2D). The 1D and 2D NMR studies in solution reveal that complex 1 is unstable at room temperature and undergoes reversible decomposition to 2. The method for how to preserve a complex with four allyl-imidazole ligands in solution is shown.  相似文献   

19.
Five ion-pair complexes, consisting of R-benzylidene-1-aminopyridinium derivatives and [Ni(mnt)2]2− (R = p-nitro (1), p-methyl (2), p-bromo (3), p-chloro (4) and m-nitro (5); mnt2− = maleonitriledithiolate), were synthesized and structurally characterized. As for 1, it is interesting to observe a large deviation from square-planar coordination geometry for the Ni atom, while no deviation is observed in the other four complexes. In the solid state, UV–Vis–NIR spectra of 25 show similar properties with intense absorption in the 200–750 nm and moderate near IR absorption in the 750–1000 nm region, whereas 1 exhibits an intense absorption from UV/Visible to near-IR region (200–1100 nm). This unique spectral feature of 1 is attributed to its distinctive structural differences from 2 to 5, namely the strong intermolecular packing interactions between anions and cations, as well as a significant deviation from the planarity of the anion. Based on DFT and TDDFT calculations, near-IR absorbance bands in 15 were assigned to combined transitions of d–d, MLCT and π–π in the [Ni(mnt)2]2− anion as well as the ion-pair charge transfer (IPCT) from the anionic HOMO to the cationic LUMO. The IPCT band position in acetonitrile is independent of the substituent group feature in benzene ring of cations for 15, which could be interpreted that the substituent group in benzene ring only has a minor contribution to the cationic LUMO.  相似文献   

20.
A mononuclear ruthenium complex [Ru(bpy)2(bpp)](PF6) (1) and its halogenated and nitro derivatives [Ru(bpy)2(Xbpp)](PF6) (bpy = 2,2′-bipyridine; bpp = 3,5-bis(2-pyridyl)pyrazole; X = Cl, 2; X = Br, 3; X = I, 4; X = NO2, 5) have been synthesized and characterized by 1H NMR, 13C NMR, HRMS, elemental analysis. Complexes 25 have been further confirmed by X-ray diffraction. Their UV–Vis and emission spectroscopies, electrochemical measurements and acid–base properties are described. The results presented here reveal that the introduction of Cl, Br, I and NO2 groups to the coordinated bpp ligand makes the absorption and emission maxima of the parent complex 1 blue-shifted, the oxidation potential of the RuII/RuIII couple increased and the pKa value decreased obviously. In addition, significant quenching of the emission by these groups is also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号