首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three Co(II), Ni(II) and Zn(II) complexes of orotate with the N-methylimidazole ligand were synthesized and characterized by means of elemental and thermal analysis, magnetic susceptibilities, IR, UV-Vis spectroscopic and antimicrobial activity studies. The crystal structures of [Co(HOr)(H2O)2(Nmeim)2]3·H2O (1), [Ni(HOr)(H2O)2(Nmeim)2] (2) and [Zn(HOr)(H2O)(Nmeim)2] (3) were determined by the single crystal X-ray diffraction technique (H3Or = orotic acid and Nmeim = N-methylimidazole). In complexes 1 and 2, the Co(II) and Ni(II) ions have distorted octahedral geometries with two Nmeim, one orotate and two aqua ligands. Complex 3 has a distorted trigonal bipyramidal geometry with two N-methylimidazole, one orotate and one aqua ligands. In the complexes, the orotate is coordinated to the metal(II) ions through the deprotonated nitrogen atom of the pyrimidine ring and the oxygen atom of the carboxylate group as a bidentate ligand. The complexes form a three-dimensional framework by hydrogen bonding, C-H?π and π?π stacking interactions. The MIC values of the complexes against selected microorganisms were determined to be in range 300-2400 μg/mL.  相似文献   

2.
Five oxovanadium(IV) complexes of 2-hydroxy-4-methoxybenzaldehyde nicotinic acid hydrazone (H2L1), 2-hydroxy-4-methoxyacetophenone nicotinic acid hydrazone (H2L2) and a binuclear oxovanadium(V) complex of H2L2 have been synthesized. These complexes were characterized by different physicochemical techniques like electronic, infrared and EPR spectral studies. The complexes [VOL1]2 · H2O (1) and [VOL2]2 · H2O (4) are binuclear and [VOL1bipy] (2), [VOL1phen] · 1.5H2O (3) and [VOL2phen] · 2H2O (6) are heterocyclic base adducts and are EPR active. In frozen DMF at 77 K, all the oxovanadium(IV) complexes show axial anisotropy with two sets of eight line patterns. The complex [VOL2 · OCH3]2 (5) is an unusual product and has distorted octahedral geometry, as obtained by X-ray diffraction studies.  相似文献   

3.
An investigation of the MII/X/L [MII = Co, Ni, Cu, Zn; X = Cl, Br, I, NCS, NO3, N3, CH3COO; L = 1-methyl-4,5-diphenylimidazole] general reaction system towards the detailed study of the intermolecular interactions utilized for controlling the supramolecular organization and the structural consequences on the structures produced has been initiated. Three representative complexes with the formulae [Co(NO3)2(L)2] (1), [Zn(NO3)2(L)2] (2) and [Co(NCS)2(L)2]·EtOH (3·EtOH) have been synthesized and characterized by spectroscopic methods and single-crystal X-ray analysis. Compounds 1 and 2 are isomorphous (tetragonal, I41cd) with their metal ions in a severely distorted octahedral Co/ZnN2O4 environment, while 3·EtOH crystallizes in P21/c with a tetrahedral CoN4 coordination. The structural analysis of 1, 2 and 3·EtOH reveals a common mode of packing among neighbouring ligands (expressed through intramolecular ππ interactions between the 4,5-diphenylimidazole moieties), enhancing thus the rigidity and stability of the complexes. The bent coordination of the two isothiocyanates in 3 [Co–NCS angles of 173.8(2) and 160.8(2)°] seems to be caused by intermolecular hydrogen bonding and crystal packing effects.  相似文献   

4.
Four new silver(I) complexes constructed with 2-(4-pyridyl)benzimidazole, namely, [Ag(PyBIm) · H2O] · NO3 (1), [Ag(PyBIm) · H2O] · ClO4 (2), [Ag2(PyBIm)2] · (SiF6) · 2H2O (3) and [Ag(PyBIm) · (HBDC)] (4) (PyBIm = 2-(4-pyridyl)benzimidazole, BDC = 1,3-benzenedicarboxylate) have been synthesized and characterized by X-ray crystallography. All the silver(I) atoms in complexes 14 are bridged by the different PyBIm ligands via NPy and NBIm into one-dimensional “zigzag” chains. The anions do not coordinate to the silver(I) atoms and only act as counter ions in complexes 13. Due to the anions, different hydrogen bonding systems are found in those three compounds, resulting in the different crystal packing. Through hydrogen bonding interactions, the structures of complexes 13 display a double layer, a three-dimensional framework and a novel double chain, respectively. In complex 4, the HBDC anions act not only as a counter ion but also as bridging ligands, which lead the “zigzag” [Ag2(PyBIm)2] chain into a two-dimensional undulating sheet. The sheets are connected through hydrogen-bonding as well as π–π interactions into a three-dimensional framework. The thermal stabilities of the four complexes and anion exchange properties of complexes 2 and 3 were also studied.  相似文献   

5.
Reactions of [Ni(L)]Cl2 · 2H2O (L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane) with isophthalic acid (H2isoph) and 1,3,5-cyclohexanetricarboxylic acid (H3chtc) yield the 1D nickel(II) complexes {[Ni(L)(isoph)] · 3H2O}n (1) and {[Ni(L)(H-chtc)] · H2O}n (2). The structures were characterized by X-ray crystallography, spectroscopic and magnetic susceptibility. The crystal structures of the 1D chain compounds 1 and 2 show an elongated distorted octahedron about each nickel(II) ion. The magnetic behavior of two compounds exhibits weak intrachain antiferromagnetic interaction with J values of −0.93 cm−1 for 1 and −1.28 cm−1 for 2. The electronic spectra of the complexes are significantly affected by the nature of the carboxylate ligands.  相似文献   

6.
Three polynuclear transition metal complexes [Mn8(DMF)8(L1)8] · 4DMF (1), [Mn6(DMF)6(L2)6] · [Mn6(DMF)4(H2O)2(L2)6] · 2DMF (2), [Cu3(L3)2(py)2] (3) of the pentadentate ligands N-acyl-salicylhydrazides were synthesized and characterized, their crystal structures were investigated. The oxidation state and properties of the central metal ions are important in crystal structure formation, trivalent Mn(III) ion which easily form stable octahedral coordination metallamacrocycle complexes, metallacrowns 1 and 2 were obtained; while bivalent Cu(II) ion is easier to form square planar, trinuclear complexes 3 was obtained. The steric effect of the N-acyl side chains also plays an important role in the structures of these polynuclear complexes. The magnetic property of 1 was also investigated.  相似文献   

7.
A series of fourteen octahedral nickel(IV) dithiocarbamato complexes of the general formula [Ni(ndtc)3]X·yH2O {ndtc stands for the appropriate dithiocarbamate anion, X stands for ClO4 (1-8; y = 0) or [FeCl4] (9-14; y = 0 for 9-12, 1 for 13 and 0.5 for 14} was prepared by the oxidation of the corresponding nickel(II) complexes, i.e. [Ni(ndtc)2], with NOClO4 or FeCl3. The complexes, involving a high-valent NiIVS6 core, were characterized by elemental analysis (C, H, N, Cl and Ni), UV-Vis and FTIR spectroscopy, thermal analysis and magnetochemical and conductivity measurements. The X-ray structure of [Ni(hmidtc)3][FeCl4] (9) was determined {it consists of covalently discrete complex [Ni(hmidtc)3]+ cations and [FeCl4] anions} and this revealed slightly distorted octahedral and tetrahedral geometries within the complex cations, and anions, respectively. The Ni(IV) atom is six-coordinated by three bidentate S-donor hexamethyleneiminedithiocarbamate anions (hmidtc), with Ni-S bond lengths ranging from 2.2597(5) to 2.2652(5) Å, while the shortest Ni···Cl and Ni···Fe distances equal 4.1043(12), and 6.2862(6) Å, respectively. Moreover, the formal oxidation state of iron in [FeCl4] as well as the coordination geometry in its vicinity was also proved by 57Fe Mössbauer spectroscopy in the case of 9.  相似文献   

8.
Three mixed-ligand CuII complexes bearing iminodiacetato (ida) and N-heterocyclic ligands, namely, [Cu2(ida)2(bbbm)(H2O)2] · H2O (1), [Cu2(ida)2(btx)(H2O)2] · 2H2O (2) and [Cu2(ida)2(pbbm)(H2O)2] · H2O · 3CH3OH (3) (bbbm = 1,1-(1,4-butanediyl)bis-1H-benzimidazole, btx = 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene, pbbm = 1,1-(1,3-propanediyl)bis-1H-benzimidazole), in addition to three fcz-based CuII complexes, namely, {[Cu(fcz)2(H2O)2] · 2NO3}n (4), {[Cu(fcz)2(H2O)] · SO4 · DMF · 2CH3OH · 2H2O}n (5) and {[Cu(fcz)2Cl2] · 2CH3OH}n (6) (fcz = 1-(2,4-difluorophenyl)-1,1-bis[(1H-1,2,4-triazol-l-yl) methyl]ethanol) have been prepared according to appropriate synthetic strategies with the aim of exploiting new and potent catalysts. Single crystal X-ray diffraction shows that 1 and 2 possess similar binuclear structures, 3 features a 2D pleated network, and 4 exhibits a 1D polymeric double-chain structure. Complexes 1-6 are tested as catalysts in the green catalysis process of the oxidative coupling of 2,6-dimethylphenol (DMP). Under the optimized reaction conditions, these complexes are catalytically active by showing high conversion of DMP and high selectivity of PPE. The preliminary study of the catalytic-structural correlations suggests that the coordination environment of the copper center have important influences on their catalytic activities.  相似文献   

9.
This paper describes the synthesis of the first Ni(II) complexes with pyridoxal semicarbazone (PLSC), viz. Ni(PLSC)Cl2 · 3.5H2O (1), [Ni(PLSC)(H2O)3](NO3)2 (2), Ni(PLSC)(NCS)2 · 4H2O (3), [Ni(PLSC-2H)NH3] · 1.5H2O (4), as well as two new complexes with pyridoxal thiosemicarbazone (PLTSC), [Ni(PLTSC-H)py]NO3 (5) and [Ni(PLTSC-H)NCS] (6). Complexes 13 are paramagnetic and have most probably an octahedral structure, for complex 2 this was proved by X-ray diffraction analysis. In contrast, complexes 46 are diamagnetic and have a square-planar structure, and in the case of complex 5 this was also confirmed by X-ray structural analysis. In all cases the Schiff bases are coordinated as tridentate ligands with an ONX (X = O, PLSC; X = S, PLTSC) set of donor atoms. With the complexes involving the neutral form of PLSC and the monoanionic form of PLTSC, the PL moiety is in the form of a zwitterion. In addition to the above-mentioned techniques, all the complexes were characterized by measuring their molar conductivities, UV–Vis and partial IR spectra.  相似文献   

10.
The new complexes [Ni(Hbstbh)2(en)] (1) and [Ni(Hpchce)(o-phen)2]Cl·CH3OH·H2O (2) with N′-benzoyl hydrazine carbodithioic acid benzyl ester (H2bstbh) and [N′-(pyridine-4-carbonyl)-hydrazine]-carbodithioic acid ethyl ester (H2pchce) have been synthesized, containing ethylenediamine (en) or o-phenanthroline (o-phen) as coligands. The ligands and their complexes have been characterized by elemental analyses, IR, magnetic susceptibility and single crystal X-ray data. [Ni(Hbstbh)2(en)] (1) and [Ni(Hpchce)(o-phen)2]Cl·CH3OH·H2O (2) crystallized in the monoclinic and triclinic systems, space group C2/c and P-1, respectively. The (N, O) donor sites of the bidentate ligands chelate the Ni(II) center and form a five-membered CN2ONi ring. The resulting complexes are paramagnetic and have a distorted octahedral geometry.  相似文献   

11.
The reactions of 2-(hydromethyl)pyridine, hmpH, with Ni(O2CMe)2·4H2O in H2O, in the absence of counterions, have been investigated. The synthetic study has led to the two new complexes [Ni(O2CMe)2(hmpH)2] (1) and [Ni4(O2CMe)4(hmp)4(H2O)2] (2). Complex 1 can also be transformed into 2 by reacting with an excess of NaOH in H2O. The structures of 1 and 2·2.25H2O·0.5(1,4-dioxane) have been solved by single-crystal, X-ray crystallography. The octahedral NiII center in centrosymmetric 1 is coordinated by two 1.10 (Harris notation) MeCO2 groups and two N,O-chelating (1.11) hpmH ligands. The tetranuclear cluster molecule of 2·2.25H2O·0.5(1,4-dioxane) possesses a distorted cubane {Ni43-OR′)4}4+ core [R′ = (2-pyridyl)CH2–] with the NiII ions and the oxygen atoms from the 3.31 hmp ligands occupying alternate vertices of the cube. Two 2.11 MeCO2 groups cap two opposite faces of the cube, while two 1.10 MeCO2 ions and two aqua ligands complete the octahedral coordination sphere of the metal centers. Characteristic IR bands for the two complexes are discussed in terms of the nature of bonding and the structures of the two complexes. The variable-temperature magnetic properties of 2 have been modeled with two J values, and reveal antiferromagnetic exchange interactions between the four NiII ions to give a diamagnetic ground state.  相似文献   

12.
A series of new asymmetrically N-substituted derivatives of the 1,4,7-triazacyclononane (tacn) macrocycle have been prepared from the common precursor 1,4,7-triazatricyclo[5.2.1.04,10]decane: 1-ethyl-4-isopropyl-1,4,7-triazacyclononane (L1), 1-isopropyl-4-propyl-1,4,7-triazacyclononane (L2), 1-(3-aminopropyl)-4-benzyl-7-isopropyl-1,4,7-triazacyclononane (L3), 1-benzyl-4-isopropyl-1,4,7-triazacyclononane (L4) and 1,4-bis(3-aminopropyl)-7-isopropyl-1,4,7-triazacyclononane (L5). The corresponding monomeric copper(II) complexes were synthesised and were found to be of composition: [Cu(L1)Cl2] · 1/2 H2O (C1), [Cu(L4)Cl2] · 4H2O (C2), [Cu(L3)(MeCN)](ClO4)2 (C3), [Cu(L5)](ClO4)2 · MeCN · NaClO4 (C4) and [Cu(L2)Cl2] · 1/2 H2O (C5). The X-ray crystal structures of each complex revealed a distorted square-pyramidal copper(II) geometry, with the nitrogen donors on the ligands occupying 3 (C1 and C2), 4 (C3) or 5 (C4) coordination sites on the Cu(II) centre. The metal complexes were tested for the ability to hydrolytically cleave phosphate esters at near physiological conditions, using the model phosphodiester, bis(p-nitrophenyl)phosphate (BNPP). The observed rate constants for BNPP cleavage followed the order kC1 ≈ kC2 > kC5 ? kC3 > kC4, confirming that tacn-type Cu(II) complexes efficiently accelerate phosphate ester hydrolysis by being able to bind phosphate esters and also form the nucleophile necessary to carry out intramolecular cleavage. Complexes C1 and C2, featuring asymmetrically disubstituted ligands, exhibited rate constants of the same order of magnitude as those reported for the Cu(II) complexes of symmetrically tri-N-alkylated tacn ligands (k ∼ 1.5 × 10−5 s−1).  相似文献   

13.
Five new transition metal complexes [MnL(OAc)]·H2O (1), [FeLCl2] (2), [NiL2]·H2O (3), [CuLCl] (4) and [ZnL2]·2H2O (5) have been synthesized using a tridentate Schiff base ligand, HL (quinoxaline-2-carboxalidine-2-amino-5-methylphenol) and the complexes have been characterized by physicochemical and spectroscopic techniques. The spectral analyses reveal an octahedral geometry for 3, square pyramidal structure for 2 and square planar structure for 4. Analytical and physicochemical data indicate tetrahedral structure for 1 and octahedral structure for 5. The crystallographic study reveals that [NiL2]·H2O shows distorted octahedral geometry with a cis arrangement of N4O2 donor set of the bis Schiff base and exhibits a two-dimensional polymeric structure parallel to [0 1 0] plane. The complexes were screened for catalytic phenol hydroxylation reaction. Coordinatively unsaturated manganese(II), iron(III) and copper(II) complexes were found to be active catalysts. The poor catalytic activity of the nickel(II) complex is due to coordinatively saturated octahedral nature of the complex. Maximum conversion of phenol was observed for the copper(II) complex and the major product was catechol.  相似文献   

14.
The present paper describes the synthesis and spectral properties of Rh(III) and Pd(II) coordination compounds with N-(pyridine-2-yl)morpholine-4-carbothioamide (PMCTA). The compounds have the general composition [RhL2Cl2]Cl · C2H5OH (1), [PdL2]Cl2 (2), [PdL2](ClO4)2 · 2C3H6O (2a), [PdLCl2] · 2H2O (3). All complexes were characterized by elemental analysis, IR, 1H NMR, 13C NMR, XPS and UV–Vis spectra. It has been shown that PMCTA behaves as a bidentate (N,S)-ligand, forming six membered metallocycles and coordinating to the metal ion through the carbothioamide sulfur atom and the pyridine nitrogen atom. The UV–Vis spectra suggest that the Pd(II) complexes are square planar, while the Rh(III) complex has an octahedral geometry. The molecular structure of the Pd(II) complex with PMCTA (M:L = 1:2) was determined by single-crystal X-ray diffraction.  相似文献   

15.
Reaction of aqueous solutions of Ni(NO3)2 and pyridoxal semicarbazone (PLSC) in the presence of NaN3 afforded two complexes, viz. green, paramagnetic binuclear octahedral [Ni2(PLSC)21,1-N3)2(N3)2] · 2H2O (1) and, as admixture, red, octahedral [Ni(PLSC–H)2] · 2H2O (2) complex. Under the same reaction conditions, pyridoxal thiosemicarbazone (PLTSC) gave only one diamagnetic square-planar, red complex [Ni(PLTSC–H)N3] · H2O (3). In the absence of NaN3, the reaction of PLTSC and Ni(NO3)2 yielded brown paramagnetic octahedral complex [Ni(PLTSC)2](NO3)2 · H2O (4).  相似文献   

16.
Two new mixed-ligand coordination polymers, {[Co(μ1,3-sq)(H2O)2(2-Meim)2]·2(2-Meim)}n (1) and [Cd(μ1,3-sq)(H2O)2(4(5)-Meim)2]n (2), (sq = squarate, 2-Meim = 2-methylimidazole, 4(5)-Meim = 5-methylimidazole) have been synthesized and structurally characterized by X-ray crystallography. The spectral (IR and UV–Vis) and thermal analyses are also reported. The Co(II) and Cd(II) ions are distorted octahedrally coordinated by four oxygen atoms of two O1–O3-bridging squarate ligands and two trans-aqua ligands, and by two nitrogen atoms of the trans-imidazole (2-Meim or 4(5)-Meim) ligands. The structures of 1 and 2 consist of one-dimensional chains of μ-1,3-squarato bridged metal(II) complex units. These chains are held together by hydrogen bonding interactions, forming three-dimensional framework.  相似文献   

17.
18.
Two new chiral dinuclear Cu(II) complexes [Cu2(μ-Cl)2(HL1)2] · C2H5OH (1) and [Cu2(μ-Cl)2(HL2)2] · CH3OH (2), have been synthesized and structurally characterized, where the chiral ligands H2L1 and H2L2 are derived from the chiral amino alcohols (S)-(−)-2-amino-3-phenyl-1-propanol and (S)-(+)-2-phenylglycinol. Single-crystal X-ray crystallographic analyses revealed that in these complexes, the dominant hydrogen bonding property of metal bound chloride anion directs the self assembly of complex molecules through CH···Cl hydrogen bonding interactions leading to the formation of intriguing hydrogen bonded metallo-supramolecular architectures in their respective crystal lattices. The supramolecular systems described here belong to the rare class of metal-organic architectures that are formed as a result of metal directed hydrogen bonding interactions among chiral complex molecules. Complexes 1 and 2 are further characterized by IR, ESR, UV–Vis and CD spectroscopy.  相似文献   

19.
Five new Cu(II) complexes [Cu(psa)(phen)] · 3H2O (1), [Cu(psa)(2bpy)] · 0.5H2O (2), [Cu(psa)(2bpy)(H2O)] · 3H2O (3), [Cu(psa)(4bpy)] · H2O (4), and [Cu(psa)0.5(N3)(2bpy)] (5) (H2psa = phenylsuccinic acid, phen = 1,10-phenanthroline, 2bpy = 2,2′-bipyridine, and 4bpy = 4,4′-bipyridine) were obtained under solvothermal conditions and characterized by single-crystal X-ray diffraction. Complexes 2 and 3 were formed by one-pot reaction. In complex 2, Cu(II) ion is four-coordinated and locates at a slightly distorted square center. In complex 3, the coordinated water molecule occupies the axial site of Cu(II) ion forming a tetragonal pyramid geometry. Complexes 1 and 3 are of 1D chain structures, and extended into 2D supramolecular network by hydrogen bonds. Complex 2 is of zipper structure, and further assembled into 2D supramolecular network by hydrogen bonds and π–π stacking interactions. Complex 4 is a 3D CdSO4-like structure with twofold interpenetration, while complex 5 is a dinuclear compound. The different structures of complexes 15 can be attributed to using the auxiliary ligands, indicating an important role of the auxiliary ligands in assembly and structure of the title complexes.  相似文献   

20.
Three novel CoII coordination polymers [Co(Dpq)2(1,4-NDC)0.5] · (1,4-HNDC) (1), [Co(Dpq)(2,6-NDC)] (2), and [Co2(Dpq)2(BPEA)4(H2O)] · H2O (3) have been obtained from hydrothermal reaction of cobalt nitrate with the mixed ligands dipyrido[3,2-d:2′,3′-f]quinoxaline (Dpq) and three dicarboxylate ligands with different spacer length [1,4-naphthalene-dicarboxylic acid (1,4-H2NDC), 2,6-naphthalene-dicarboxylic acid (2,6-H2NDC) and biphenylethene-4,4′-dicarboxylic acid (BPEA)]. All these complexes are fully structurally characterized by elemental analysis, IR, and single-crystal X-ray diffraction analysis. Single-crystal X-ray analysis reveal that complex 1 is infinite one-dimensional (1-D) chains bridged by 1,4-NDC ligands, which are extended into a two-dimensional (2-D) supramolecular network by π-π interactions between the Dpq molecules. Complex 2 is a distorted three-dimensional (3-D) PtS network constructed from infinite Co-O-C rod units. Complex 3 has a 5-fold interpenetrated 3-D structure with diamondoid topology based on dinuclear [Co2(CO2)22-OH2)N4O2] units and BPEA molecules. The different structures of complexes 1-3 illustrate the influence of the length of dicarboxylate ligands on the self-assembly of polymeric coordination architectures. In addition, the thermal properties of complexes 1-3 and fluorescent properties of complexes 2 and 3 have been investigated in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号