首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quinolinylcyclopalladated complexes 3ab were synthesised in good yields (81% and 77%) by the insertion reaction of the prepared dinuclear palladium complexes [Pd(C,N-2-C9H4N-CHO-3-R-6)Cl(PPh3)]2 [(R = H (2a), R = OMe (2b)] with isonitrile XyNC (Xy = 2,6-Me2C6H3). The cyclopalladated complexes 3ab were also obtained in low yields (39% and 33.5%) via a one pot oxidative addition reaction of quinoline chloride 1ab with isonitrile XyNC:Pd(dba)2 (4:1). The reactions of 3ab with Tl(TfO) (TfO = triflate, CF3SO3) in the presence of H2O or EtOH causes depalladation reactions of the complexes to provide the corresponding organic compounds 4ab, 5ab and 6ab in yields (41%, 27% and 18–19%). The products were characterized by satisfactory elemental analyses and spectral studies (IR, 1H, 13C and 31P NMR). The crystal structures of 2a, 3a and 3b were determined by X-ray diffraction studies.  相似文献   

2.
RSeCCPh (1a, R = Et; 1b, R = n-Bu; 1c, R = Ph; 1d, R = 2,4,6-Me3C6H2) reacts with equimolar amounts of Fe2(CO)9 (2) to give [(μ-SeR)(μ-σ,π-CCPh)]Fe2(CO)6 (3a, R = Et; 3b, R = n-Bu; 3c, R = Ph; 3d, R = 2,4,6-Me3C6H2).Complexes 3a-3d exist as two isomers, depending on the axial or equatorial position of R at selenium.Addition of P(OiC3H7)3 (4) to 3d affords {(μ-Se-2,4,6-Me3C6H2)[μ-η1-CCPh(P(OiC3H7)3)]}Fe2(CO)6 (5) along with {(μ-Se-2,4,6-Me3C6H2)[μ-η11-PhCC(P(OiC3H7)3)]}Fe2(CO)6 (6).The solid-state structures of 3d, 5 and 6 were determined by single X-ray structure analysis.In mononuclear 3d the Fe(CO)3 fragments are bridged by a μ-Se-2,4,6-Me3C6H2 and a μ-σ,π-CCPh unit, resulting in an over-all butterfly arrangement.Due to steric reasons, the mesityl group is pointing away from the PhCC entity and hence, is located in an equatorial position.Compounds 5 and 6, which co-crystallise in the ratio of 7:93, feature aμ-bridging 2,4,6-Me3C6H2Se unit and either a vinylidenic CCPh(P(OiC3H7)3) (complex 5) or a olefinic PhCC(P(OiC3H7)3) (complex 6) building block of which the latter entity is part of a diiron cyclobutene ring.  相似文献   

3.
The dimeric starting material [Ru(η6-p-cymene)(μ-Cl)Cl]2 reacts with the phosphino-amides o-Ph2P–C6H4CO–NH–R [R = iPr (a), Ph (b), 4-MeC6H4 (c), 4-FC6H4 (d)] to give the mononuclear compounds 1ad [RuCl(η6-p-cymene)(o-Ph2P–C6H4–CO–NH–R)]Cl. The subsequent reaction of these complexes with KPF6 produced the cationic species 2ad [RuCl(η6-p-cymene)(o-Ph2P–C6H4–CO–NH–R)][PF6] in which phosphino-amides also act as rigid P,O-chelating ligands. The molecular structures of 2bd were determined crystallographically. Amide deprotonation is achieved when complexes 2ad were made react with 1 M aqueous solution of KOH, affording the corresponding neutral species 3ad [RuCl(η6-p-cymene)(o-Ph2P–C6H4–CO–N–R)] in which a P,N-coordination mode is suggested.  相似文献   

4.
2,4,6-Triphenylpyrylium tetrafluoroborate (TPPBF4)-sensitized photoinduced electron-transfer (PET) reactions of 1,4-diaryl-2,3-dioxabicyclo[2.2.2]octanes 5 (a: Ar1 = Ar2 = p-MeOC6H4, b: Ar1 = Ar2 = p-MeC6H4, c: Ar1 = Ar2 = Ph) underwent novel fragmentation through their radical cations to give 1,4-diarylbutan-1,4-diones 6 accompanied by elimination of ethylene. On the other hand, 4-aryl-cyclohex-3-en-1-ones 7, p-substituted phenols 8, and 4-aryl-4-aryloxycyclohexanones 9 were produced through proton-catalyzed pathways when the PET reactions of 5 were performed in the absence of a certain base such as 2,6-di-tert-butylpyridine (DTBP). Particularly, the formation of 9 is consistent with the novel cationic rearrangement involving nucleophilic O-1,2-aryl shifts and C-1,4-aryl shifts.  相似文献   

5.
Coordinatively unsaturated rhodium and iridium complexes having a bulky thiolate, [Cp∗M(PMe3)(SDmp)](BArF4) (1a: M = Rh; 1b: M = Ir; Dmp = 2,6-(mesityl)2C6H3, ArF = 3,5-(CF3)2C6H3), catalyzed the hydrogenation of benzaldehyde, N-benzylideneaniline, and cyclohexanone, under 1 atm of H2 at low temperatures. In these catalytic reactions, the M-H/S-H complexes [Cp∗M(PMe3)(H)(HSDmp)](BArF4) (2a: M = Rh; 2b: M = Ir) generated via H2 heterolysis by 1a or 1b were suggested to transfer both M-H hydride and S-H proton to substrates. The catalytic reactions were terminated by the dissociation of H-SDmp from the metal centers of 2a and 2b that occurs at ambient temperature under H2 atmosphere.  相似文献   

6.
The synthesis and the characterization of some new aluminum complexes with bidentate 2-pyrazol-1-yl-ethenolate ligands are described. 2-(3,5-Disubstituted pyrazol-1-yl)-1-phenylethanones, 1-PhC(O)CH2-3,5-R2C3HN2 (1a, R = Me; 1b, R = But), were prepared by solventless reaction of 3,5-dimethyl pyrazole or 3,5-di-tert-butyl pyrazole with PhC(O)CH2Br. Reaction of 1a or 1b with (R1 = Me, Et) yielded N,O-chelate alkylaluminum complexes (2a, R = R1 = Me; 2b, R = But, R1 = Me; 2c, R = Me, R1 = Et). Compound 1a was readily lithiated with LiBun in thf or toluene to give lithiated species 3. Treatment of 3 with 0.5 equiv of MeAlCl2 or AlCl3 yielded five-coordinated aluminum complexes [XAl(OC(Ph)CH{(3,5-Me2C3HN2)-1})2] (4, X = Me; 5, X = Cl). Reaction of 5 with an equiv of LiHBEt3 generated [Al(OC(Ph)CH{(3,5-Me2C3HN2)-1})3] (6). Complex 6 was also obtained by reaction of 3 with 1/3 equiv of AlCl3. Treatment of 5 with 2 equiv of AlMe3 yielded complex 2a, whereas with an equiv of AlMe3 afforded a mixture of 2a and [Me(Cl)AlOC(Ph)CH{(3,5-Me2C3HN2)-1}] (7). Compounds 1a, 1b, 2a-2c and 4-6 were characterized by elemental analyses, NMR and IR (for 1a and 1b) spectroscopy. The structures of complexes 2a and 5 were determined by single crystal X-ray diffraction techniques. Both 2a and 5 are monomeric in the solid state. The coordination geometries of the aluminum atoms are a distorted tetrahedron for 2a or a distorted trigonal bipyramid for 5.  相似文献   

7.
Compound [NbCp′Me4] (Cp′ = η5-C5H4SiMe3, 1) reacted with several ROH compounds (R = tBu, SiiPr3, 2,6-Me2C6H3) to give the derivatives [NbCp′Me3(OR)] (R = tBu 2a, SiiPr32b, 2,6-Me2C6H32c). The diaryloxo tantalum compound [TaCpMe2(OR)2] (Cp = η5-C5Me5, R = 2,6-Me2C6H33) was obtained by reaction of [TaCpCl2Me2] with 2 equiv of LiOR (R = 2,6-Me2C6H3). Abstraction of one methyl group from these neutral compounds 1-3 with the Lewis acids E(C6F5)3 (E = B, Al) gave the ionic derivatives [NbCp′Me2X][MeE(C6F5)3] (X = Me 4-E. X = OR; R = SiiPr35b-E, 2,6-Me2C6H35c-E. E = B, Al) and [TaCpMe(OR)2][MeE(C6F5)3] (R = 2,6-Me2C6H36-E; E = B, Al). Polymerization of MMA with the aryloxoniobium compound 2c and Al(C6F5)3 gave syndiotactic PMMA in a low yield, whereas the tetramethylniobium compound 1 and the diaryloxotantalum derivative 3 were inactive.  相似文献   

8.
Both symmetrical and unsymmetrical tetramethylphenyl-linked iminopyridines, 1,4-{(2-C5H4N)RCN}2-2,3,5,6-Me4C6 [R = H (L1a), Me (L1b)] and 1-{(2-C5H4N)HCN}-4-{(2-C5H4N)MeCN}-2,3,5,6-Me4C6 (L1c), have been prepared in good yield using straightforward condensation strategies. The molecular structures of L1a and L1c reveal the adjacent imino and pyridyl nitrogen atoms to adopt transoid configurations. Interaction of L1x with two equivalents of NiX2 [NiX2 = (DME)NiBr2 (DME = 1,2-dimethoxyethane), NiCl2] in n-BuOH at elevated temperature affords the paramagnetic bimetallic complexes, [(L1x)Ni2X4] [L1x = L1a, X = Br (1a); L1x = L1b, X = Br (1b); L1x = L1c, X = Br (1c); L1x = L1a, X = Cl (1d)] in moderate to good yield. Adduct formation results on treatment of bromide-containing 1a-1c with DMF (dimethylformamide) to yield dicationic [(L1x)Ni2Br2(DMF)6]Br2 [L1x = L1a (2a), L1b (2b), L1c (2c)], while with chloride-containing 1d the neutral species [(L1a)Ni2Cl4(DMF)4] (3) is obtained. Activation of 1a-1d and 2c with excess methylaluminoxane (MAO) generates active ethylene polymerisation catalysts (1b/MAO > 1c/MAO > 1a/MAO ∼ 1d/MAO > 2c/MAO) affording mixtures of waxes and low molecular weight solid polyethylene. Multinuclear NMR and GC analysis of the waxy components reveal methyl branched materials that contain mostly internal unsaturation along with low levels of α-olefins. Broad molecular weight distributions are observed for all the polymers obtained, with that from 1b/MAO leading to the highest molecular weight. Single crystal X-ray diffraction studies have been performed on L1a, L1c, 2a-2c and 3.  相似文献   

9.
The novel ruthenium dithiolene complexes [(arene)Ru{S2C2(COOMe)2}] (arene = C6H6 (1a), C6H4(Me)(iPr) (1b), C6Me6 (1c)) were synthesized. The equilibrium between complex 1a and the corresponding dimer [(C6H6)Ru{S2C2(COOMe)2}]2 (1a′) was confirmed in solution. The reaction of complex 1a with dimethyl- or diethylacetylene dicaboxylate gave the alkene-bridged adducts [(C6H6)Ru{S2C2(COOMe)2}{C2(COOR)2}] (R = Me (2a), Et (3a)) as [2 + 2] cycloaddition products formally. The reactions of complex 1a with diazo compounds also gave the alkylidene-bridged adducts [(C6H6)Ru{S2C2(COOMe)2}(CHR)] (R = H (4a), SiMe3 (5a), COOEt (6a)) as [2 + 1] cycloaddition products. The electrochemical behavior of complex 1a was investigated. The reductant of complex 1a was a stable species for several minutes. The oxidant of complex 1a was very unstable; the cation 1a+ formed was immediately converted to the corresponding cationic dimer 1a+. The cationic dimer 1a+ was stable for several minutes, and it was rapidly and quantitatively converted to the neutral complex 1a when it was reduced.  相似文献   

10.
11.
A family of N,N donor ligands [1-(NHAr)-2-(PR2NAr′)C6H4] (1a-d; Ar = 2,6-iPr2-C6H3, R = Me, Ph, Ar′ = 2,4,6-Me3-C6H2, 2-iPr-C6H4, 2,6-iPr2-C6H3) has been prepared and fully characterized by multinuclear NMR spectroscopy and X-ray crystallography. Lithiation of the N-H unit and subsequent salt metathesis protocols with ScCl3THF3 provides an avenue to organometallic scandium complexes. The resultant base-free monomeric dichlorides LScCl2, 3a-d, have been fully characterized by NMR spectroscopy as well as X-ray crystallography (3a,c,d). Alkylation of the dichlorides using LiMe results in clean formation of dialkyl complexes LScMe24a-c. Thermolysis of these materials under argon and hydrogen leads to decomposition products as a result of C-H activation of the ligand. Analysis of these results provides a qualitative assessment of the metalative resistance of each ligand framework.  相似文献   

12.
13.
The reaction pathway for the formation of the trimethylsiloxysilyllithium compounds (Me3SiO)RR′SiLi (2a: R = Et, 2b: R = iPr, 2c: R = 2,4,6-Me3C6H2 (Mes); 2a-c: R′ = Ph; 2d: R = R′ = Mes) starting from the conversion of the corresponding trimethylsiloxychlorosilanes (Me3SiO)RR′SiCl (1a-d) in the presence of excess lithium in a mixture of THF/diethyl ether/n-pentane at −110 °C was investigated.The trimethylsiloxychlorosilanes (Me3SiO)RPhSiCl (1a: R = Et, 1b: R = iPr, 1c: R = Mes) react with lithium to give initially the trimethylsiloxysilyllithium compounds (Me3SiO)RPhSiLi (2a-c). These siloxysilyllithiums 2 couple partially with more trimethylsiloxychlorosilanes 1 to produce the siloxydisilanes (Me3SiO)RPhSi-SiPhR(OSiMe3) (Ia-c), and they undergo bimolecular self-condensation affording the trimethylsiloxydisilanyllithium compounds (Me3SiO)RPhSi-RPhSiLi (3a-c). The siloxydisilanes I are cleaved by excess of lithium to give the trimethylsiloxysilyllithiums (Me3SiO)RPhSiLi (2). In the case of the two trimethylsiloxydisilanyllithiums (Me3SiO)RPhSi-RPhSiLi (3a: R = Et, 3b: R = iPr) a reaction with more trimethylsiloxychlorosilanes (Me3SiO)RPhSiCl (1a, 1b) takes place under formation of siloxytrisilanes (Me3SiO)RPhSi-RPhSi-SiPhR(OSiMe3) (IIa: R = Et, IIb: R = iPr) which are cleaved by lithium to yield the trimethylsiloxysilyllithiums (Me3SiO)RPhSiLi (2a, 2b) and the trimethylsiloxydisilanyllithiums (Me3SiO)RPhSi-RPhSiLi (3a, 3b). The dimesityl-trimethylsiloxy-silyllithium (Me3SiO)Mes2SiLi (2d) was obtained directly by reaction of the trimethylsiloxychlorosilane (Me3SiO)Mes2SiCl (1d) and lithium without formation of the siloxydisilane intermediate. Both silyllithium compounds 2 and 3 were trapped with HMe2SiCl giving the products (Me3SiO)RR′Si-SiMe2H and (Me3SiO)RPhSi-RPhSi-SiMe2H.  相似文献   

14.
The synthesis, characterization and thermal behavior of new monomeric allylpalladium (II) complexes with dichalcogenoamidodiphosphinate anions are reported. The complexes [R = H, R′ = Pri, E = S (1a); R = H, R′ = Pri, E = Se (1b); R = H, R′ = Ph, E = S (1c); R = H, R′ = Ph, E = Se (1d); R = Me, R′ = Pri, E = S (2a); R = Me, R′ = Pri, E = Se (2b); R = Me, R′ = Ph, E = S (2c); R = Me, R′ = Ph, E = Se (2d)] have been prepared by room temperature reaction of [Pd(η3-CH2C(R)CH2)(acac)] (acac = acetylacetonate) with dichalcogenoimidodiphosphinic acids in acetonitrile solution. The complexes have been characterized by multinuclear NMR (1H, 13C{1H}, 31P{1H}, 77Se{1H}), FT-IR and elemental analyses. The crystal structures of complexes 1a, 1d and 2d have been reported and they consist of a six-membered PdE2P2N ring (E = S for 1a and Se for 1d and 2d) and an allyl group, C3H4R(R = H for 1a and 1d and Me for 2d). Thermogravimetric studies have been carried out for few representative complexes. The complexes thermally decompose in argon atmosphere to leave a residue of palladium chalcogenides, which have been characterized by PXRD, SEM and EDS.  相似文献   

15.
2-Phenylaniline reacted with Pd(OAc)2 in toluene at room temperature for 24 h in a one-to-one molar ratio and with the system PdCl2, NaCl and NaOAc in a 1 (2-phenylaniline):1 (PdCl2):2 (NaCl):1 (NaOAc) molar ratio in methanol at room temperature for one week to give the dinuclear cyclopalladated compounds (μ-X)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}]2 [1a (X = OAc) and 1b (X = Cl)] in high yield. Moreover, the reaction between 2-phenylaniline and Pd(OAc)2 in one-to-one molar ratio in acid acetic at 60 °C for 4 h, followed by a metathesis reaction with LiBr, allowed isolation of the dinuclear cyclopalladated compound (μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}]2 (1c) in moderate yield. A parallel treatment, but using monodeuterated acetic acid (DOAc) as solvent in the cyclopalladation reaction, allowed isolation of a mixture of compounds 1c, 1cd1 [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4](μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)-3-d-C6H3] and 1cd2 (μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)-3-d-C6H3}]2 in moderate yield and with a deuterium content of ca. 60%. 1a and 1b reacted with pyridine and PPh3 affording the mononuclear cyclopalladated compounds [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(X)(L)] [2a (X = OAc, L = py), 2b (X = Cl, L = py), 3a (X = OAc, L = PPh3) and 3b (X = Cl, L = PPh3)] in a yield from moderate to high. Furthermore, 1a reacted with Na(acac) · H2O to give the mononuclear cyclopalladated compound 4 [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(acac)] in moderate yield. 1H NMR studies in CDCl3 solution of 2a, 2b, 3a, 3b and 4 showed that 2a and 3a presented an intramolecular hydrogen bond between the acetato ligand and the amino group, and were involved in a dynamic equilibrium with water present in the CDCl3 solvent; and that the enantiomeric molecules of 2b and 4 were in a fast exchange at room temperature, while they were in a slow exchange for 2a, 3a and 3b. The X-ray crystal structures of 3b and 4 were determined. 3b crystallized in the triclinic space group with a = 9.9170(10), b = 10.4750(10), c = 12.0890(10) Å, α = 98.610(10)°, β = 94.034(10)° and γ = 99.000(10)° and 4 in the monoclinic space group P21/a with a = 11.5900(10), b = 11.2730(10), c = 12.2150(10) Å, α = 90°, β = 107.6560(10)° and γ = 90°.  相似文献   

16.
The synthesis and characterization of pyrazole derivatives of general formula [C6H4-4-R-1-{(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)}] [R = OMe (1a) or H (1b)] with a ferrocenylmethyl substituent are described.The study of the reactivity of compounds 1 with palladium(II) acetate has allowed the isolation of complexes (μ-AcO)2[Pd{κ2-C,N-C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}]2 (2) [R = OMe (2a) or H (2b)] that contain a bidentate [C(sp2, phenyl), N] ligand and a central “Pd(μ-AcO)2Pd” unit.Furthermore, treatment of 2 with LiCl produced complexes (μ-Cl)2[Pd{κ2-C,N-C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}]2 (3) [R = OMe (3a) or H (3b)] that arise from the replacement of the acetato ligands by the Cl.Compounds 2 and 3 also react with PPh3 giving the monomeric complexes [Pd{κ2-C,N-C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}X(PPh3)] {X = AcO and R = OMe (5a) or H (5b) or X = Cl and R = OMe (6a) or H (6b)}, where the phosphine is in a cis-arrangement to the metallated carbon atom. Treatment of 3 with thallium(I) acetylacetonate produced [Pd{κ2-C,N-C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}(acac)] (7) [R = OMe (7a) or H (7b)]. Electrochemical studies of the free ligands and the cyclopalladated complexes are also reported. The dimeric complexes 3 also react with MeO2C-CC-CO2Me (in a 1:4 molar ratio) giving [Pd{(MeO2C-CC-CO2Me)2C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}Cl] (8) [R = OMe (8a) or H (8b)], which arise from the bis(insertion) of the alkyne into the σ{Pd-C(sp2, phenyl)} bond of 3.  相似文献   

17.
The precursor 1-(9-anthracenylmethyl)-3-alkylbenzimidazolium chlorides (1a, alkyl = C4H9, 1b, alkyl = C6H13) and their three new NHC silver(I) and mercury(II) complexes {[1-(9-anthracylmethyl)-3-alkylbimy]MCl}2 (2a, alkyl = C4H9, M = Ag; 2b, alkyl = C6H13, M = Ag; 3a, alkyl = C4H9, M = Hg; bimy = benzimidazol-2-ylidene) have been prepared and characterized. The crystal structures of 2a, 2b and 3a showed that 2-D supramolecular layers are formed by both benzimidazole ring head to tail π-π stacking interactions and anthracene ring face-to-face π-π stacking interactions.  相似文献   

18.
The bridging aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; 4-C6H4OMe, 1c; Xyl = 2,6-Me2C6 H3) react with acrylonitrile or methyl acrylate, in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13- Cα(N(Me)(R))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = CN, 3a; R = Xyl, R′ = CN, 3b; R = 4-C6H4OMe, R′ = CN, 3c; R = Me, R′ = CO2Me, 3d; R = 4-C6H4OMe, R′ = CO2Me, 3e). Likewise, 1a reacts with styrene or diethyl maleate, under the same reaction conditions, affording the complexes [Fe2{μ-η13-Cα(NMe2)Cβ(R′)Cγ(H)(R″)}(μ-CO)(CO)(Cp)2] (R′ = H, R″ = C6H5, 3f; R′ = R″ = CO2Et, 3g). The corresponding reactions of [Ru2{μ-CN(Me)(CH2Ph)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1d) with acrylonitrile or methyl acrylate afford the complexes [Ru2{μ-η13-Cα(N(Me)(CH2Ph))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R′ = CN, 3h; CO2Me, 3i), respectively.The coupling reaction of olefin with the carbyne carbon is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs selectively between the less substituted alkene carbon and the aminocarbyne, and the Cβ-H, Cγ-H hydrogen atoms are mutually trans.The reactions with acrylonitrile, leading to 3a-c and 3h involve, as intermediate species, the nitrile complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO)(NC-CHCH2)(Cp)2][SO3CF3] (M = Fe, R = Me, 4a; M = Fe, R = Xyl, 4b; M = Fe, R = 4-C6H4OMe, 4c; M = Ru, R = CH2C6H5, 4d).Compounds 3a, 3d and 3f undergo methylation (by CH3SO3CF3) and protonation (by HSO3CF3) at the nitrogen atom, leading to the formation of the cationic complexes [Fe2{μ-η13-Cα(N(Me)3)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 5a; R = CO2Me, 5b; R = C6H5, 5c) and [Fe2{μ-η13-Cα(N(H)(Me)2)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 6a; R = CO2Me, 6b; R = C6H5, 6c), respectively.Complex 3a, adds the fragment [Fe(CO)2(THF)(Cp)]+, through the nitrile functionality of the bridging ligand, leading to the formation of the complex [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CNFe(CO)2Cp)}(μ-CO)(CO)(Cp)2][SO3CF3] (9).In an analogous reaction, 3a and [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3], in the presence of Me3NO, are assembled to give the tetrameric species [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CN[Fe2{μ- CN(Me)(R)}(μ-CO)(CO)(Cp)2])}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 10a; R = Xyl, 10b; R = 4-C6H4OMe, 10c).The molecular structures of 3a and 3b have been determined by X-ray diffraction studies.  相似文献   

19.
The direct cyclopalladation of 3-methoxyimino-2-(4-chlorophenyl)-3H-indole (1a) and 3-methoxyimino-2-phenyl-3H-indole (1b) results in the regioselective activation of the ortho σ[C(sp2, phenyl)-H] bond affording (μ-OAc)2[Pd{κ2-C,N-C6H3-4R-1-(C8H4N-3′-NOMe)}]2 (2) {R = Cl (2a) or H (2b)} that contain a central “Pd(μ-OAc)2Pd” core. Compounds 2a and 2b reacted with triphenylphosphine (in a molar ratio PPh3:2 = 2) giving [Pd{κ2-C,N-C6H3-4R-1-(C8H4N-3′-NOMe)}(OAc)(PPh3)] (3) {R = Cl (3a) or H (3b)}. Treatment of 2a or 2b with a slight excess of LiCl in acetone produced the metathesis of the bridging ligands and the formation of (μ-Cl)2[Pd{κ2-C,N-C6H3-4R-1-(C8H4N-3′-NOMe)}]2 (4) {R = Cl (4a) or H (4b)} with a central “Pd(μ-Cl)2Pd” moiety. The reactions of 4a or 4b with deuterated pyridine (py-d5) or triphenylphosphine gave the monomeric derivatives [Pd{κ2-C,N-C6H3-4R-1-(C8H4N-3′-NOMe)}Cl(L)] with R = Cl or H and L = py-d5 (5) or PPh3 (6). The crystal structure of 6b·1/2CH2Cl2 confirmed the mode of binding of the ligand, the nature of the metallated carbon atom and a trans-arrangement of the phosphine ligand and the heterocyclic nitrogen. Theoretical calculations on the free ligands are also reported and have allowed the rationalization of the regioselectivity of the cyclopalladation process.  相似文献   

20.
A series of titanocene(III) alkoxides L2Ti(III)OR where L = Cp, R = Et(1b), tBu(1a), 2,6-Me2C6H3(1c), 2,6-tBu2-4-Me-C6H2(1d), or L = Cp*, R = Me(2e), tBu(2a), Ph(2f) was synthesized and subjected to reaction with [CpM(CO)3]2 [M = Mo, W], [CpRu(CO)2]2, and Co2(CO)8. The Ti(III) precursors 1a, 1c, 2a, 2e, and 2f reacted with [CpM(CO)3]2 [M = Mo, W] to form heterobimetallic complexes L2Ti(OR)(μ-OC)(CO)2MCp [M = Mo, W], of which Ti and M are linked by an isocarbonyl bridge. Reactions of these Ti(III) complexes with Co2(CO)8 resulted in formation of Ti-Co1 heterobimetallic complexes, from 2a, 2e, or 2f, or Ti-Co3 tetrametallic complexes, Cp2Ti(OtBu)(μ-OC)Co3(CO)9 from 1a, 1b, or 1c. The products were characterized by NMR, IR, and X-ray crystallography. Reaction mechanisms were proposed from these results, in particular, from steric/electronic effects of titanium alkoxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号