首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The yttrium chloride with the bridged bis(amidinate) L (L = Me3SiNC(Ph)N(CH2)3NC(Ph)NSiMe3) LYCl(DME) (2) was synthesized and structurally characterized. Treatment of LLnCl(sol)x (Ln = Yb, sol = THF, x = 2 1; Ln = Y, sol = DME, x = 1 2) with the dilithium salt Li2L(THF)0.5 afforded the novel bimetallic lanthanide complexes supported by three ligands, Ln22-L)3 · DME (Ln = Yb 3, Y 4; DME = dimethylether), instead of the designed complex LLn(μ2-L)LnL via the ligand redistribution reaction. Complexes 3 and 4 were fully characterized including X-ray analysis and 1H NMR spectrum for 4. Reaction of LnCl3 (Ln = Yb, Y) with 2 equiv. of Li2L(THF)0.5 gave the anionic complexes [Li(DME)3][L2Ln] (Ln = Yb 5, Y 6), which were confirmed by a crystal structure determination. The further study indicated that complexes 3 and 4 can also be synthesized by reaction of LnCl3 (Ln = Yb, Y) with 1.5 equiv. of Li2L(THF)0.5 or reaction of 1 and 2 with anionic complexes 5 and 6. Complexes 3, 4, 5 and 6 were found to be high active catalysts for ring-opening polymerization of ε-caprolactone (CL).  相似文献   

2.
New pyrimidine derivatives (pyr) have been synthesized using palladium-catalyzed Suzuki coupling reaction. These compounds can undergo cyclometalation with iridium trichloride to form bis-cyclometalated iridium complexes, (pyr)2Ir(acac) (acac = acetylacetonate; pyr = cyclometalated pyr). The substituents at the both cyclometalated phenyl ring and pyrimidine ring were found to affect both electrochemical and photophysical properties of the complexes. Computation results on these complexes are consistent with the electrochemical and photophysical data. The complexes are green-emitting with good solution quantum yields at ∼0.30. Light-emitting devices using these complexes as dopants were fabricated, and the device performance at 100 mA/cm2 are moderate: 9 (17 481 cd/m2, 4.8%, 18 cd/A, 5.1 lm/W); 10 (18 704 cd/m2, 4.9%, 18.9 cd/A, 4.7 lm/W); 13 (20 942 cd/m2, 5.4%, 21.0 cd/A, 6.1 lm/W).  相似文献   

3.
The syntheses and structures of a series of metal complexes, namely Cu2Cl4(L1)(DMSO)2·2DMSO (L1 = N,N′-bis(2-pyridinyl)-1,4-benzenedicarboxamide), 1; {[Cu(L2)1.5(DMF)2][ClO4]2·3DMF} (L2 = N,N′-bis(3-pyridinyl)-1,4-benzenedicarboxamide), 2; {[Cd(NO3)2(L3)]·2DMF} (L3 = N,N′-bis-(2-pyrimidinyl)-1,4-benzenedicarboxamide), 3; {[HgBr2(L3)]·H2O}, 4, and {[Na(L3)2][Hg2X5]·2DMF} (X = Br, 5; I, 6) are reported. All the complexes have been characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Complex 1 is dinuclear and the molecules are interlinked through S?S interactions. In 2, the Cu(II) ions are linked through the L2 ligands to form 1-D ladder-like chains with 60-membered metallocycles, whereas complexes 3 and 4 form 1-D zigzag chains. In complexes 5 and 6, the Na(I) ions are linked by the L3 ligands to form 2-D layer structures in which the [Hg2X5] anions are in the cavities. The L2 ligand acts only as a bridging ligand, while L1 and L3 show both chelating and bridging bonding modes. The L1 ligand in 1 adopts a trans-anti conformation and the L2 ligand in 2 adopts both the cis-syn and trans-anti conformations, whereas the L3 ligands in 36 adopt the trans conformation.  相似文献   

4.
A series of square-pyramidal copper(II) complexes, [Cu(LSe)(NN)] (H2LSe = seleno-bisphenolate; NN = bipyridyl, phenanthroline or N,N-dimethylethylenediamine) have been synthesized and characterized by elemental analyses, magnetic measurements, IR, EPR, and electronic spectral studies. Single crystal X-ray structures of [Cu(LSe)(bpy)]·H2O (2), [Cu(LSe)(phen)]·CH2Cl2 (3) and [Cu(LSe)(N,N-Me2en)] (4) showed that all the complexes have approximately square-pyramidal geometry. In complexes 2 and 3, the square plane is occupied by O(1), O(2), N(1) and N(2) and the apical position by Se atom of LSe 2− ligand. The asymmetric unit of complex 4 contains two crystallographically independent discrete molecules A and B with CuN2OSe chromophore comprising the square plane and the axial position being occupied by another phenolate oxygen atom. Complexes 2, 3 and 4 are found to be paramagnetic and EPR parameters extracted are: g = 2.232, g = 2.069; 〈geff〉 = 1.95; and g = 2.232, g = 2.083 for complexes 2, 3 and 4, respectively. Both the complexes 2 and 4 show three reduction processes: (a) a quasi-reversible reduction of CuII to CuI, (b) an irreversible reduction of CuI to Cu0 with the release of free ligand, and (c) a reduction process occurs at this coordinated ligand. They also show a well-defined quasi-reversible oxidation of CuII to CuIII and an irreversible oxidation peak at ∼1.30 and 1.40 V vs. Ag/AgCl for 4 and 2, respectively, with no cathodic counterpart, and were attributed to the oxidation of the metal coordinated ligand.  相似文献   

5.
A structural study of lanthanide complexes with the deprotonated form of the monobracchial lariat ether N-2-salicylaldiminatobenzyl-aza-18-crown-6 (L4) (Ln = La(III)–Tb(III)) is presented. Attempts to isolate complexes of the heaviest members of the lanthanide series were unsuccessful. The X-ray crystal structures of [Pr(L4)(H2O)](ClO4)2 · H2O · C3H8O and [Sm(L4)(H2O)](ClO4)2 · C3H8O show the metal ion being bound to the eight donor atoms of the ligand backbone. Coordination number nine is completed by the oxygen atom of an inner-sphere water molecule. Two different conformations of the crown moiety (labelled as A and B) are observed in the solid state structure of the Pr(III) complex, while for the Sm(III) complex only conformation A is observed. The complexes were also characterized by means of theoretical calculations performed in vacuo at the HF level, by using the 3-21G basis set for the ligand atoms and a 46 + 4fn effective core potential for lanthanides. The optimized geometries of the Pr(III) and Sm(III) complexes show an excellent agreement with the experimental structures obtained from X-ray diffraction studies. The calculated relative energies of the A and B conformations for the different [Ln(L4)(H2O)]2+ complexes (Ln = La, Pr, Sm, Ho or Lu) indicate a progressive stabilization of the A conformation with respect to the B one upon decreasing the ionic radius of the Ln(III) ion. For the [Ln(L4)(H2O)]2+ systems, most of the calculated bond distances between the metal ion and the coordinated donor atoms decrease along the lanthanide series, as usually observed for Ln(III) complexes. However, our ab initio calculations provide geometries in which the Ln–O(5) bond distance [O(5) is an oxygen atom of the crown moiety] increases across the lanthanide series from Sm(III) to Lu(III).  相似文献   

6.
A series of NNOO-tetradentate enolic Schiff-base ligands were prepared where ligand L1 = bis(benzoylacetone)propane-1,2-diimine, L2 = bis(acetylacetone)-propane-1,2-diimine, L3 = bis-(acetylacetone)cyclohexane-1,2-diimine. Their further reaction with aluminum tris(ethyl) formed complexes LAlEt (1a, 2a and 3a). The solid structure of complexes 1a, 2a and 3a confirmed by X-ray single crystal analysis manifested that these complexes were all monomeric and five-coordinated with an aluminum atom in the center. The configurations of these complexes varied from trigonal bipyramidal geometry (tbp) to square pyramidal geometry (sqp) due to their different auxiliary ligand architectures. 1H NMR spectra indicated that all these complexes retained their configuration in solution states. Their catalytic properties to polymerize racemic-lactide (rac-LA) in the presence of 2-propanol were also studied. The diimine bridging parts as well as the diketone segment substituents had very close relationship with their performance upon the polymerization process. All these complexes gave moderately isotactic polylactides with controlled molecular weight and very narrow molecular weight distributions.  相似文献   

7.
1-(Phenylselenomethyl)-1H-benzotriazole (L1) and 1-(4-methoxyphenyltelluromethyl)-1H-benzotriazole (L2) have been synthesized by reacting 1-(chloromethyl)-1H-benzotriazole with in situ generated nucleophiles PhSe and ArTe, respectively. The complexes of L1 and L2 with Pd(II) and Ru(II)(η6-p-cymene) have been synthesized. Proton, carbon-13, Se-77 and/or Te-125 NMR spectra authenticate both the ligands and their complexes. The single crystal structures of L1, L2 and [RuCl(η6-p-cymene)(L)][PF6] (L = L1: 3, L = L2: 4) have been solved. The Ru-Se and Ru-Te bond lengths have been found 2.4801(11) and 2.6183(10) Å, respectively. The palladium complexes, [PdCl2(L)] (L = L1: 1, L = L2: 2) have been explored for Heck and Suzuki-Miyaura C-C coupling reactions. The TON values are upto 95,000. The Ru-complexes have been found promising for catalytic oxidation of alcohols (TON ∼ 7.8-9.4 × 104). The complexes of telluroether ligands are as efficient catalysts as those of selenoether ones and in fact better for catalytic oxidation.  相似文献   

8.
The new potentially bidentate pyrazole-phosphinite ligands [(3,5-dimethyl-1H-pyrazol-1-yl)methyl diphenylphosphinite] (L1) and [2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyl diphenylphosphinite] (L2) were synthesised and characterised. The reaction of L1 and L2 with the dimeric complexes [Ru(η6-arene)Cl2]2 (arene = p-cymene, benzene) led to the formation of neutral complexes [Ru(η6-arene)Cl2(L)] (L = L1, L2) where the pyrazole-phosphinite ligand is κ1-P coordinated to the metal. The subsequent reaction of these complexes with NaBPh4 or NaBF4 produced the [Ru(η6-p-cymene)Cl(L2)][BPh4] and [Ru(η6-benzene)Cl(L2)][BF4] compounds which contain the pyrazole-phosphinite ligand κ2-P,N bonded to ruthenium. All the complexes were fully characterised by analytical and spectroscopic methods. The structure of the complex [Ru(η6-p-cymene)Cl(L2)][BPh4] was also determined by a X-ray single crystal diffraction study.  相似文献   

9.
Four cyclometalated Pt(II) complexes, i.e., [(L2)PtCl] (1b), [(L3)PtCl] (1c), [(L2)PtCCC6H5] (2b) and [(L3)PtCCC6H5] (2c) (HL2 = 4-[p-(N-butyl-N-phenyl)anilino]-6-phenyl-2,2′-bipyridine and HL3 = 4-[p-(N,N′-dibutyl-N′-phenyl)phenylene-diamino]-phenyl-6-phenyl-2,2′-bipyridine), have been synthesized and verified by 1H NMR, 13C NMR and X-ray crystallography. Unlike previously reported complexes [(L1)PtCl] (1a) and [(L1)PtCCC6H5] (2a) (HL1 = 4,6-diphenyl-2,2′-bipyridine), intense and continuous absorption bands in the region of 300-500 nm with strong metal-to-ligand charge transfer (1MLCT) (dπ(Pt) → π(L)) transitions (ε ∼ 2 × 104 dm3 mol−1 cm−1) at 449-467 nm were observed in the UV-Vis absorption spectra of complexes 1b, 1c, 2b and 2c. Meanwhile, with the introduction of electron-donating arylamino groups in the ligands of 1a and 2a, complexes 1b and 2b display stronger phosphorescence in CH2Cl2 solutions at room temperature with bathochromically shifted emission maxima at 595 and 600 nm, relatively higher quantum yields of 0.11 and 0.26, and much longer lifetimes of 8.4 and 4.5 μs, respectively. An electrochromic film of 1b-based polymer was obtained on Pt or ITO electrode surface, which suggests an efficient oxidative polymerization behavior. An orange multilayer organic light-emitting diode with 1b as phosphorescent dopant was fabricated, achieving a maximum current efficiency of 11.3 cd A−1 and a maximum external efficiency of 5.7%. The luminescent properties of complexes 1c and 2c are dependent on pH value and solvent polarity, which is attributed to the protonation of arylamino units in the C^N^N cyclometalating ligands.  相似文献   

10.
The synthesis of lanthanide hydroxo complexes stabilized by a carbon-bridged bis(phenolate) ligand 2,2’-methylene-bis(6-tert-butyl-4-methylphenoxo) (MBMP2−) was described, and their reactivity toward phenyl isocyanate was explored. Reactions of (MBMP)Ln(C5H5)(THF)2 with a molar equiv. of water in THF at −78 °C afforded the bis(phenolate) lanthanide hydroxides as dimers [{(MBMP)Ln(μ-OH)(THF)2}2] [Ln = Nd (1), Yb (2)] in high yields. Complexes 1 and 2 reacted with phenyl isocyanate in THF, after workup, to give the desired O−H addition products, [(MBMP)Ln(μ-η12-O2CNHPh)(THF)2]2 [Ln = Nd (3), Yb (4)] in excellent isolated yields. These complexes were well characterized, and the molecular structures of complexes 2 to 4 were determined by X-ray crystallography. The ytterbium atom in complex 2 is coordinated to six oxygen atoms to form a distorted octahedral geometry, whereas each metal center in complexes 3 and 4 is seven-coordinated, and the coordination geometry can be best described as a distorted pentagonal bipyramid.  相似文献   

11.
The syntheses of three new ligands (L1-3), which are based upon a DO3A core and appended with additional receptor sites for metal cations, are described, together with their corresponding Eu(III) complexes (Eu-L1-3). The complexes are visibly luminescent in aqueous solution, following sensitization via the pyridine chromophore, showing characteristic narrow line-like emission from Eu(III). The luminescence properties show that water is effectively excluded from the inner coordination sphere of europium (q = 0). Each of the complexes showed perturbed luminescence properties upon addition of a variety of d-block metal ions. For example, emission quenching was observed for each complex following addition of Cr(III) and Cu(II). Selectivity towards Hg(II) (over Cd(II), Cu(II) and Zn(II)) was demonstrated with Eu-L3, which possesses a receptor site incorporating a softer thiophene moiety. More specifically, Hg(II) binding resulted in changes in the form of the steady state emission spectrum, together with a corresponding reduction of the luminescence lifetime in water, which can be attributed to an increase in inner sphere hydration (q = 2) and thus enhanced non-radiative deactivation of the 5D0 state by proximate O-H oscillators.  相似文献   

12.
The synthesis, structure, spectroscopic and electro-spectrochemical properties of sterically constrained Schiff-base ligands (LnH) (n = 1, 2, and 3) (L = N-[m-(methylmercapto)aniline]-3,5-di-t-butylsalicylaldimine, m = 4, 3, and 2 positions, respectively) and their copper(II) complexes [Cu(Ln)2] are described. Three new dissymmetric bidentate salicylaldimine ligands containing a donor set of ONNO were prepared by reaction of different primary amine with 3,5-di-t-butyl-2-hydroxybenzaldehyde (3,5-DTB). The copper(II) metal complexes of these ligands were synthesized by treating an methanolic solution of the appropriate ligand with an equimolar amount of Cu(Ac)2 · H2O. The ligands and their copper complexes were characterized by FT-IR, UV–Vis, 1H and 13C NMR and elemental analysis methods in addition to magnetic susceptibility, molar conductivity, and spectroelectrochemical techniques. Analytical data reveal that copper(II) metal complexes possess 1:2 metal–ligand ratios. On the basis of molar conductance, the copper(II) metal complexes could be formulated as [Cu(Ln)2] due to their non-electrolytic nature in dimethylforamide (DMF). The room temperature magnetic moments of [Cu(Ln)2] complexes are in the range of 1.82–1.90 B.M which are typical for mononuclear of Cu(II) compounds with a S = 1/2 spin state. The complexes did not indicate antiferromagnetic coupling of spin at this temperature. Electrochemical and thin-layer spectroelectrochemical studies of the ligands and complexes were comparatively studied in the same experimental conditions. The results revealed that all ligands displayed irreversible reduction processes and the cathodic peak potential values of (L3H) are shifted towards negative potential values compared to those of (L1H) and (L2H). It is attributed to the weak-electron-donating methyl sulfanyl group substituted on the ortho (m = 2) position of benzene ring. Additionally, all copper complexes showed one quasi-reversible one-electron reduction process in the scan rates of 0.025–0.50 V s−1, which are assigned to simple metal-based one-electron processes; [Cu(2+)(Ln)2] + e → [Cu(1+)(Ln)2]. The spectral changes corresponding to the ligands and complexes during the applied potential in a thin-layer cell confirmed the ligand and metal-based reduction processes, respectively.  相似文献   

13.
A series of organotin(IV) complexes with O,O-diethyl phosphoric acid (L1H) and O,O-diisopropyl phosphoric acid (L2H) of the types: [R3Sn · L]n (L = L1, R = Ph 1, R = PhCH22, R = Me 3, R = Bu 4; L = L2, R = Ph 9, R = PhCH210, R = Me 11, R = Bu 12), [R2Cl Sn · L]n (L = L1, R = Me 5, R = Ph 6, R = PhCH27, R = Bu 8; L = L2, R = Me 13, R = Ph 14, R = PhCH215, R = Bu 16), have been synthesized. All complexes were characterized by elemental analysis, TGA, IR and NMR (1H, 13C, 31P and 119Sn) spectroscopy analysis. Among them, complexes 1, 2, 3, 5, 8, 9 and 11 have been characterized by X-ray crystallography diffraction analysis. In the crystalline state, the complexes adopt infinite 1D infinite chain structures which are generated by the bidentate bridging phosphonate ligands and the five-coordinated tin centers.  相似文献   

14.
A convenient synthetic method for the preparation of organothiomethylpyridine ligands 2-(RSCH2)C5H4N (R = Ph (L1), Me (L2)), 2-MeS–6-Me-C5H3N (L3), and 2-MeS–4-Me-C5H3N (L4) via the initial lithiation of substituted 2-picolines followed by the nucleophilic reaction with a diorganyldisulfide is described. The complexes [PtBr2L] (L = L1L4) have been prepared in good to high yields as yellow solids with low solubility in organic solvents. The solid state structures of the complexes have been determined, showing the spatial arrangement of the complexes to depend significantly upon varying substituents within the ligand. The complexes undergo oxidation by bromine to form the tetravalent complexes [PtBr4(L)] (L = L1L4). The solid state structures of [PtBr4(L2)] and [PtBr4(L4)] have been determined, and shown to be monomeric with the ligand chelating the platinum centre.  相似文献   

15.
Eight new organoantimony(V) complexes with 1-phenyl-1H-tetrazole-5-thiol [L1H] and 2,5-dimercapto-4-phenyl-1,3,4-thiodiazole [L2H] of the type RnSbL5 − n (L = L1: n = 4, R = n-Bu 1, Ph 2, n = 3, R = Me 3, Ph 4; L = L2: n = 4, R = n-Bu 5, Ph 6, n = 3, R = Me 7, Ph 8) have been synthesized. All the complexes 1-8 have been characterized by elemental, FT-IR, 1H and 13C NMR analyses. Among them complexes 2, 6 and 8 have also been confirmed by X-ray crystallography. The structure analyses show that the antimony atoms in complexes 2 and 6 display a trigonal bipyramid geometry, while it displays a distorted capped trigonal prism in complex 8 with two intramolecular Sb?N weak interactions. Furthermore, the supramolecular structure of 2 has been found to consist of one-dimensional linear molecular chain built up by intermolecular C-H?N weak hydrogen bonds, while a macrocyclic dimer has been found in complex 6 linked by intermolecular C-H?S weak hydrogen bonds with head-to-tail arrangement. Interestingly, one-dimensional helical chain is recognized in complex 8, which is connected by intermolecular C-H?S weak hydrogen bonds.  相似文献   

16.
Copper complexes [Cu(Ln)2] 1-4 bearing N,O-chelating β-ketoamine ligands Ln based on condensation products of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone with aniline (L1), α-naphthylamine (L2), o-methylaniline (L3), and p-nitroaniline (L4), respectively, were synthesized and characterized by IR, 1H NMR and X-ray crystallography (except 2). They were shown to catalyze the vinyl polymerization of norbornene when activated by methylaluminoxane (MAO). Both steric and electronic effects are important and influential factors contributing to the catalytic activity of the complexes with the order of 2 > 4 > 3 > 1.  相似文献   

17.
Novel rhenium complexes containing the maltolate (mal) or kojate (koj) anions as chelating ligands have been synthesized: [ReOCl(mal)2] (1), [ReOCl2(mal)(PPh3)] (2), [ReOBr2(mal)(PPh3)] (3), [ReOCl2(koj)(PPh3)] (4) and [ReOBr2(koj)(PPh3)] (5). The products have been characterized by FTIR, 1H, 13C, and 31P NMR spectroscopies and elemental analysis. The crystal and molecular structures of all complexes were determined. Complex 1 crystallizes monoclinic, space group C2/c, Z = 8. It contains two O,O′-bidentate maltolate ligands and one chloro ligand at the (ReO)3+ unit, so that a distorted octahedral geometry is adopted by the six-coordinated rhenium(V) center. The chloro ligand occupies a cis position to the oxo ligand. Complexes 2 and 3 are isostructural and crystallize orthorhombic, space group Pbca and Z = 8. The isostructural complexes 4 and 5 crystallize monoclinic, space group P21/n and Z = 4. In complexes 25, the (ReO)3+ unit is coordinated by a monoanionic O,O-bidentate unit of the maltolate (2 and 3) or kojate (4 and 5) ligand, one triphenylphosphine and two halogeno ligands (Cl in 2 and 4; Br in 3 and 5), with the rhenium(V) center in a distorted octahedral environment. The halide ligands are in cis positions to each other.  相似文献   

18.
Aluminium complexes bearing the N,N-chelating ligand 1,4-bis(2-hydroxy-3,5-di-tert-butyl)piperazine (1) have been synthesised. Both monometallic and bimetallic aluminium methyl complexes (2 and 3, respectively) were prepared by treatment of 1 with the appropriate amount of AlMe3. Complex 2 can be converted to 3 by addition of excess AlMe3. Bimetallic aluminium-ethyl complex 4 was also prepared. Treatment of 1 with AlEt2Cl afforded the monometallic chloride complex 5. Treatment of this latter complex with potassium alkoxides (KOR, R = Me, Et, iPr, tBu) or AgOTf afforded the corresponding aluminium alkoxide complexes (6, R = Et; 7, R = Me; 8, R = iPr; 9, R = tBu; 10, R = OTf) in good yields. Aluminium ethoxide complex 6 was also synthesised by treatment of 1 with AlEt2OEt. All of these complexes were tested as potential catalysts in the ring-opening polymerisation of rac-lactide and caprolactone with limited success.  相似文献   

19.
20.
Mononuclear and heterodinuclear complexes of the salen-type ligand H2LH2 [H2LH2 = 2,2′-[1,2-dihydroxybenzene-4,5-diylbis(nitrilomethylidine)]bis(3,5-di-tert-butylphenol)] were prepared, whereof [{Mn(CH3OH)2}LH2]Cl, [ML()] (M = Ni, Cu, CrCl(py); py = pyridine, Cp = pentamethylcyclopentadienyl) were characterized by X-ray analysis. Additionally, cyclic voltammetric investigations were performed to ascertain the influence of the second transition metal complex fragment []2+ on the metallo salen ligand. Moreover, the complexes were tested in the catalytic epoxidation of styrene. Although the complexes are quite sensitive towards oxidants, monometallic complex [{Mn(CH3OH)2}LH2]Cl exhibited a conversion of 70.6% with styrene oxide selectivity of 88% over 1 h at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号