首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A deamination process was observed after copper(II) complexation reaction with guanidinoacetic (Gaa) and glutamic acids (Glu), forming the binuclear copper(II) complex K2Cu2C16H23N7O12 · 1/2H2O (1), which was characterized by elemental analysis (CHN), spectroscopy methods (IR and EPR), powder X-ray diffraction, thermogravimetric analysis (TGA), and mass spectrometry. A new ligand, namely biguanide-1,5-diethanoate (Bge) (C6H9N5O4), was formed during complexation, probably due to the reaction between two Gaa species and the consequent release of a significant amount of ammonia, thus, characterizing the deamination process. In complex 1, Bge behaved as a tetradentated ligand, using its oxygen and nitrogen atoms as coordinating sites to both Cu(II) ions. In addition, Glu has coordinated to Cu(II) through its α-N and O atoms. Theoretical calculations of the ciscis, cistrans, and transtrans isomers of 1, considering three prototropic forms of the Bge ligand, were carried out using semi-empirical quantum mechanics (PM3/d). DFT (B3LYP and B3P86) calculations of complex 1, in which a hydrogen atom replaced the side chain of Glu, were also carried out using the 6-31G(d) basis set and the LanL2DZ effective core potential for the transition metal. Based on experimental and theoretical data, we concluded that the transtrans isomer of the binuclear copper(II) complex 1 should be the most stable, although the occurrence of other isomers, even if in minor quantities, should not be disregarded.  相似文献   

2.
The reaction of copper(II) nitrate trihydrate and 2-(2-pyridyl)benzimidazole (pybzim) leads to [Cu(pybzim)2(NO3)](NO3). The compound has been studied by IR, UV–Vis spectroscopy and X-ray crystallography. The electronic structure of the [Cu(pybzim)2(NO3)]+ cation has been calculated with the density functional theory (DFT) method. The spin-allowed doublet–doublet electronic transitions of [Cu(pybzim)2(NO3)]+ have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of the title compound has been discussed on this basis.  相似文献   

3.
Two novel copper(II) complexes incorporating bis(pyrazol-1-yl)methane ligand (bpzm) have been synthesized. The compounds [CuCl(bpzm)2(H2O)]Cl·H2O (1) and [Cu(N3)2(bpzm)]n (2) have been studied by IR, UV-Vis spectroscopy and X-ray crystallography. The experimental studies on the compounds 1 and 2 have been accompanied computationally by the density functional theory (DFT) calculations.  相似文献   

4.
Methionine sulfoxide complexes of iron(II) and copper(II) were synthesized and characterized by chemical and spectroscopic techniques. Elemental and atomic absorption analyses fit the compositions K2[Fe(metSO)2]SO4·H2O and [Cu(metSO)2]·H2O. Electronic absorption spectra of the complexes are typical of octahedral geometries. Infrared spectroscopy suggests coordination of the ligand to the metal through the carboxylate and sulfoxide groups. An EPR spectrum of the Cu(II) complex indicates tetragonal distortion of its octahedral symmetry. 57Fe Mössbauer parameters are also consistent with octahedral stereochemistry for the iron(II) complex. The complexes are very soluble in water.  相似文献   

5.
6.
The synthesis, crystal structure and magnetic measurements of three new polynuclear tetracarboxylato-bridged copper(II) complexes, i.e. {[Cu4(phen)2(μ-O2CC2H5)8] · (H2O)}n (1), [Cu2(μ-O2CC6H4OH)4(C7H7NO)2] · 6H2O (2) and [Cu2(μ-O2CCH3)4(C7H7NO)2] (3) (phen = 1,10-phenanthroline, O2CC6H4OH = 3-hydroxy benzoate, C7H7NO = 4-acetylpyridine) are reported. All compounds consist of dinuclear units, in which two Cu(II) ions are bridged by four syn,syn11:μ carboxylates, showing a paddle-wheel cage type with a square-pyramidal geometry, arranged in different ways. The structure of compound 1 consists of an one-dimensional structure generated by an alternating classical dinuclear paddle-wheel unit and an unusual dinuclear Cu2(μ-OCOC2H5)2(μ-O2CC2H5)2(phen)2unit, which are connected to each other via a syn,anti-triatomic propionato bridge in an axial-equatorial configuration. The adjacent chains are connected to generate a 2D structure through the face-to-face π–π interaction between phen rings. Structures of compounds 2 and 3 both consist of a symmetric dinuclear Cu(II) carboxylate paddle-wheel core and pyridyl nitrogen atoms of 4-acetylpyridine ligand at the apical position, and just differ in the substituents of the equatorial ligands.

The magnetic properties have been measured and correlated with the molecular structures. It is found that in the two classical paddle-wheel compounds the Cu(II) ions are strongly antiferromagnetically coupled with J = −278.5 and −287.0 cm−1 for complexes 2 and 3, respectively. In compound 1 the magnetic susceptibility could be fitted with two different, independent Cu(II) units, one strongly coupled and one weakly coupled; the paddle-wheel dinuclear unit has the strongest antiferromagetic coupling with a value for J of −299.5 cm−1, whereas the Cu(II) ions in the propionato-bridged dinuclear unit of 1 display a very weak antiferromagnetic coupling with a value for J = −0.75 cm−1, due to the orthogonality of the magnetic orbitals. Also the exchange within the chain is therefore very weak. The magneto-structural correlations for complexes 1, 2, and 3 are discussed on the basis of the structural parameters and magnetic data for the complexes.  相似文献   


7.
Copper(II) complexes of 3-methylpicolinic acid (3-MepicH), namely [Cu(3-Mepic)2] · 2H2O (1) and [Cu(3-Mepic)2(4-pic)] (2) were prepared and characterized by IR spectroscopy and thermal analysis (TGA/DTA). Crystal structure for 2 was determined by X-ray crystal structure analysis. 1 was prepared by reaction of copper(II) sulfate pentahydrate and 3-methylpicolinic acid in aqueous solution, while 2 was prepared by recrystallization of 1 from 4-picoline solution. Structure analysis revealed square-pyramidal copper(II) coordination and N,O-chelating mode of 3-methylpicolinic acid in 2. Copper(II) is coordinated by two 3-Mepic ligands in the basal plane of a square pyramid and by 4-picoline in the apical position. Crystal packing of 2 is dominated by weak intermolecular C–H ··· O hydrogen bonds and π ··· π stacking interactions forming a complex three-dimensional supramolecular architecture.  相似文献   

8.
《Journal of Coordination Chemistry》2012,65(17-18):1611-1619
Two new series of mononuclear and homobinuclear Co(II), Ni(II) and Cu(II) complexes with mono- and bis-azo compounds derived from 2,7-dihydroxynaphthalene and anthranilic acid or o-aminophenol are prepared and characterized by elemental and thermal analyses, conductance, IR, electronic, ESR spectra and magnetic moment measurements. The ligand field splitting parameters and Racah constant are calculated. The spectral and magnetic results obtained are utilized to determine the geometries around the metal(II) ion. The geometry of the complex formed depends on the structure of the ligand and the type of metal(II) ion. The mode of bonding of the ligand with the metal ions is deduced from IR spectra.  相似文献   

9.
Two mononuclear complexes containing copper(II) and 2-benzoylpyridine 4-phenylsemicarbazone (BPS) and pseudohalides, [Cu(BPS)(N3)] (1) and [Cu(BPS)(NCS)(H2O)]NO3 (2) have been synthesized and characterized by UV-Vis, Fast atom bombardment, electron paramagnetic resonance, and infrared spectroscopy. Crystal structures of these two complexes have been resolved by using single crystal X-ray studies. Complex 1 crystallizes in the triclinic lattice with space group P1 and is a distorted square planar geometry. Complex 2 also crystallizes in the triclinic lattice with space group P1 but is a distorted square pyramidal geometry with N3O2 chromophore. Both the complexes have g > g > 2.0023 and a G value less than 4, consistent with a d x 2? y 2 ground state. Superoxide dismutase activities have also been examined.  相似文献   

10.
Five dinuclear copper(II) complexes, [Cu2L1(N3)2·2H2O] (1), [Cu2L2(N3)2·2H2O] (2), [Cu2L3(N3)2·2H2O] (3), [Cu2L4(N3)2·2H2O] (4) and [Cu2L5(N3)2·2H2O] (5) of Robson type macrocyclic Schiff-base ligands derived from [2 + 2] condensation of 4-methyl-2,6-diformylphenol with 1,3-diaminopropane (H2L1), 1,2-diaminoethane (H2L2), 1,2-diaminopropane (H2L3), 1,2-diamino-2-methylpropane (H2L4) and 1,2-diaminocyclohexane (H2L5), respectively have been synthesized and characterized. Catecholase activity of those complexes using 3,5-di-tert-butylcatechol as substrate has been investigated in two solvents, methanol and acetonitrile. The role of the solvent and of the steric properties of the macrocyclic ligand of these complexes on their catecholase activity has been examined thoroughly. Acetonitrile is observed to be a better solvent than methanol as far as their catalytic activity is concerned. However, methanol reveals to be a better choice to identify the enzyme–substrate adduct. The investigation also prompted that chelate ring size does affect on the catalytic efficiency: 6-membered ring (as in H2L1) exhibits better activity than its 5-membered counterpart (as in H2L2). The activity of the 5-membered counter parts also depend upon the steric factor. Moreover, the catalytic activity of the complexes is enhanced to a significant extent by increasing the bulkiness of the substituents on the backbone of macrocyclic H2L2 ligands.  相似文献   

11.
The influence of pH for the reaction system involving CuCl2?·?2H2O, imidazole (Him) and phenylacetic acid (HL) at room temperature was investigated. Cu2(Him)4L4?·?2H2O (1) and Cu3(Him)2(im)2L4 (2) were synthesized at pH 6.5 and 7.5, respectively. In 1, the Cu is coordinated by two nitrogen atoms of two Him and three oxygen atoms from three phenylacetates to form a square pyramid CuN2O3. Adjacent square pyramids share edges to form Cu2N4O4 dimers, which are assembled by hydrogen bonds into a 2-D layer parallel to the (001) plane. In 2, copper atoms are interlinked by im? and L? to form a 2-D layer parallel to (100). The resulting layers have C–H···O hydrogen bonds leading to a 3-D supramolecular architecture. Variable temperature magnetism of 1 and 2 suggests a weak ferromagnetic or antiferromagnetic coupling exchange (J?=?0.58?cm?1 for 1, J?=??10.24?cm?1 for 2).  相似文献   

12.
One nonlinear and one linear trinuclear copper(II) complex [Cu3(dien)2(pdc)2CH3OH]2?·?6CH3OH (1) and [Cu3(pdc)2(CH3OH)6(H2O)4] (2) were prepared and characterized structurally, where dien is diethylenetriamine and pdc3? the trianion of 3,5-pyrazoledicarboxylic acid. Both complexes consist of 3,5-pyrazoledicarboxylato-bridged trinuclear copper(II) centers. In 1, copper(II) ions are five-coordinate in distorted square pyramids with bond angles 164.78° for Cu(1)–Cu(2)–Cu(3) and 164.51° for Cu(4)–Cu(5)–Cu(6). In 2, the three copper(II) ions are six-coordinate with elongated octahedral geometry. The trinuclear units of 1 and 2 interact through hydrogen bonds to form 3-D and 2-D supramolecular networks, respectively. Variable temperature magnetic susceptibility measurements show that 1 and 2 are antiferromagnetically coupled with J values of ?11.2 and ?13.3?cm?1.  相似文献   

13.
Using the X-ray structure of solid nitrosoguanidine (ngH), potential structures of its complex with aqueous nickel(II) were surmised. A single-crystal X-ray diffraction determination of the Ni(II) complex confirmed one of these configurations. The X-ray structural parameters were compared with the most stable gaseous configurations derived from ab initio-MO calculations. The lowest energy calculated configuration of the nickel(II) complex and the X-ray crystal structure are in excellent agreement. The neutral diamagnetic, planar, red-colored [bis(nitrosoguanidate)nickel(II)] complex, [Ni(ng)2]°, is nitrogen coordinated in the trans configuration. It is highly insoluble in all solvents investigated, and has essentially the same crystal symmetry and unit-cell dimensions as the free ligand. In ligand crystals, two molecules have four nitrogen atoms aligned in a plane such that they are suitable for coordination to a nickel ion (1.945, 2.064?Å), when it is at the 1/2,?1/2,?1/2 unit-cell position. Furthermore, the complexes stack, as in [Ni(dmg)2]°, placing the nickel ions in nearly perfect positions for weak metal–metal bonding between adjacent layers at the near optimum distance of 3.65(1)?Å. This results in a tight, linear macromolecule having low volatility and the extremely low solubility observed. As far as we are aware this is the first instance in which a ligand crystal structure is essentially the same as the complex it forms, with minor differences in bond distances, angles and torsion angles, and suggests some potentially unique properties and applications for this material.  相似文献   

14.
15.
The reagent 3,8,13,18-tetramethyl-21H,23H-porphine-2,7,12,17-tetrapropionic acid or coproporphyrin-I (CPI) was used for the spectrophotometric determination of copper(II) and cobalt(II) in the presence of pyridine and imidazole catalysts. Optimum conditions were investigated and the methods were applied to the determination of parts per billion levels of copper(II) and cobalt(II). The Sandell sensitivities of the recommended procedures were 0.568 μm cm−2 and 0.464 μg cm−2 (for A = 0.001) for copper and cobalt, respectively. The relative standard deviations were 2.0% for copper and 1.0% for cobalt. The kinetics of the reaction of CPI with copper(II) and cobalt(II) in the presence of the catalysts and the influence of the temperature were studied, and their kinetic constants determined.The influence of light on the photodecomposition of CPI was also studied.  相似文献   

16.
Four mixed-ligand complexes, [Cu3(cpa)6(pda)1] (1) (cpa = 4-chlorophenylacetic acid, pda = 1,2-diaminopropane), [Cu3(fpa)6(tn)1] (2) (fpa = 4-fluorophenylacetic acid, tn = 1,3-diaminopropane), [Cu3(cpa)6(en)1] (3) (cpa = 4-chlorophenylacetic acid, en = ethylenediamine), and [Cu3(fpa)6(pda)1] (4) (fpa = 4-fluorophenylacetic acid, pda = 1,2-diaminopropane), were synthesized by reacting 4-chlorophenylacetic acid or 4-fluorophenylacetic acid, the diamines, and metal salts. Their structures were determined by elemental analysis and single-crystal X-ray diffraction analysis. The antimicrobial activities for the metal complexes were evaluated against Escherichia coli, Pseudomonas putida, Bacillus subtilis, and Bacillus cereus. The antimicrobial results indicated that the four synthesized complexes displayed good inhibitory activity against E. coli and B. subtilis, and could be promising antibacterial agents.  相似文献   

17.
Two complexes [CuL2(H2O)2] (1) and [ZnL2(H2O)2] (2) (L?=?3-carboxyl-1,2,4-triazole (L)) have been synthesized and characterized by single-crystal X-ray diffraction analysis. Compound 1 crystallizes in the monoclinic space group P 2(1)/n, a?=?8.632(8)?Å, b?=?9.153(8)?Å, c?=?6.991(7)?Å, β?=?94.279(12)°, Z?=?2, R 1?=?0.0296, wR 2?=?0.0918. Compound 2 also crystallizes in the monoclinic space group P 2(1)/n, a?=?4.937(3)?Å, b?=?18.107(10)?Å, c?=?6.344(4)?Å, β?=?106.839(7)°, Z?=?2, R 1?=?0.0230, wR 2?=?0.0556. Extensive intermolecular hydrogen bonds assemble 1 and 2 into three-dimensional (3D) supramolecular architectures, with eight-member H-bonded synthons. Compounds 1 and 2 were also characterized by element analysis, FT–IR, luminescence and EPR studies.  相似文献   

18.
19.
Three new copper complexes and one cobalt complex with 5-(pyrazinyl)tetrazolate anion, (pyztz), as chelating bidentate ligand, were obtained by the reaction of pyrazinecarbonitrile with sodium azide in the presence of copper(II) nitrate or cobalt(II)chloride. Complexes of composition [Cu(pyztz)2(H2O)] (1) deep blue crystals, [Cu(pyztz)2(H2O)2] (2a) green crystals, [Co(pyztz)2(H2O)2] (2b) orange crystals, [Cu(pyztz)2(H2O)2] · (H2O) (3) blue crystals were obtained. The single crystal X-ray diffraction revealed that complex 1 has square pyramidal structure with one water molecule at apical and two pyrazine-tetrazolato ligands at basal sites, while structures of 2a, 2b and 3 consist of octahedrally coordinated metal ions, where two pyztz anions act as bidentate ligands via one of the pyrazine-N atoms and one of the tetrazole-N atoms in trans-positions and two trans water molecules. Complex 3 contains one extra lattice water molecule. Hydrogen bonds of the types O–H?O and O–H?N connect the mononuclear units to a three-dimensional network structure in 2 (a and b are isostructural) and 3. Although the H-bond patterns look complex it is shown that they can be related to the well-known three- and six-connected rutile net (rtl) in 2 and the four- and six-connected fsh-net in 3.  相似文献   

20.
Four copper(II) complexes were synthesized by reactions of new imidazole-containing polyamine ligand N1-(2-aminoethyl)-N1-(1H-imidazol-4-ylmethyl)-ethane-1,2-diamine (HL) with Cu(ClO4)2 · 6H2O under different pH and their structures were characterized by X-ray crystallography. Interestingly, the complexes have diverse structures from protonated ligand [H3(HL)][CuCl4] · Cl (1), dinuclear [Cu2(HL)2Cl](ClO4)3 · H2O (2), one-dimensional chain polynuclear {[Cu(L)](ClO4)}n (3) to cyclic-tetranuclear [Cu4(L)4](ClO4)4 · 3CH3CN (4) coordination compounds by varying reaction pH from acidic to basic. The results indicate that the reaction pH has great impact on the formation and structure of the complexes. The magnetic measurements show that there are antiferromagnetic interactions between the Cu(II) centers with g = 2.09, J = −39.0 cm−1 and g = 2.17, J = −36.8 cm−1 for 3 and 4, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号