首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mononuclear cations [(η5-C5Me5)RhCl(bpym)]+ (1), [(η5-C5Me5)IrCl(bpym)]+ (2), [(η6-p-PriC6H4Me)RuCl(bpym)]+ (3) and [(η6-C6Me6)RuCl(bpym)]+ (4) as well as the dinuclear dications [{(η5-C5Me5)RhCl}2(bpym)]2+ (5), [{(η5-C5Me5)IrCl}2(bpym)]2+ (6), [{(η6-p-PriC6H4Me)RuCl}2(bpym)]2+ (7) and [{(η6-C6Me6)RuCl}2(bpym)]2+ (8) have been synthesised from 2,2′-bipyrimidine (bpym) and the corresponding chloro complexes [(η5-C5Me5)RhCl2]2, [(η5-C5Me5)IrCl2]2, [(η6-PriC6H4Me)RuCl2]2 and [(η6-C6Me6)RuCl2]2, respectively. The X-ray crystal structure analyses of [3][PF6], [5][PF6]2, [6][CF3SO3]2 and [7][PF6]2 reveal a typical piano-stool geometry around the metal centres; in the dinuclear complexes the chloro ligands attached to the two metal centres are found to be, with respect to each other, cis oriented for 5 and 6 but trans for 7. The electrochemical behaviour of 1-8 has been studied by voltammetric methods. In addition, the catalytic potential of 1-8 for transfer hydrogenation reactions in aqueous solution has been evaluated: All complexes catalyse the reaction of acetophenone with formic acid to give phenylethanol and carbon dioxide. For both the mononuclear and dinuclear series the best results were obtained (50 °C, pH 4) with rhodium complexes, giving turnover frequencies of 10.5 h−1 for 1 and 19 h−1 for 5.  相似文献   

2.
The mononuclear complexes [(η5-C5Me5)IrCl(L1)] (1), [(η5-C5Me5)RhCl(L1)] (2), [(η6-p-PriC6H4Me)RuCl(L1)] (3) and [(η6-C6Me6)RuCl(L1)] (4) have been synthesised from pyrazine-2-carboxylic acid (HL1) and the corresponding complexes [{(η5-C5Me5)IrCl2}2], [{(η5-C5Me5)RhCl2}2], [{(η6-p-PriC6H4Me)RuCl2}2], and [{(η6-C6Me6)RuCl2}2], respectively. The related dinuclear complexes [{(η5-C5Me5)IrCl}2(μ-L2)] (5), [{(η5-C5Me5)RhCl}2(μ-L2)] (6), [{(η6-p-PriC6H4Me)RuCl}2(μ-L2)] (7) and [{(η6-C6Me6)RuCl}2(μ-L2)] (8) have been obtained in a similar manner from pyrazine-2,5-dicarboxylic acid (H2L2). Compounds isomeric to the latter series, [{(η5-C5Me5)IrCl}2(μ-L3)] (9), [{(η5-C5Me5)RhCl}2(μ-L3)] (10), [{(p-PriC6H4Me)RuCl}2(μ-L3)] (11) and [{(η6-C6Me6)RuCl}2(μ-L3)] (12), have been prepared by using pyrazine-2,3-dicarboxylic acid (H2L3) instead of H2L2. The molecular structures of 2 and 3, determined by X-ray diffraction analysis, show the pyrazine-2-carboxylato moiety to act as an N,O-chelating ligand, while the structure analyses of 5-7, confirm that the pyrazine-2,5-dicarboxylato unit bridges two metal centres. The electrochemical behaviour of selected representatives has been studied by voltammetric techniques.  相似文献   

3.
A series of neutral, anionic and cationic arene ruthenium complexes containing the trichlorostannyl ligand have been synthesised from SnCl2 and the corresponding arene ruthenium dichloride dimers [(η6-arene)Ru(μ2-Cl)Cl]2 (arene = C6H6, PriC6H4Me). While the reaction with triphenylphosphine and stannous chloride only gives the neutral mono(trichlorostannyl) complexes [(η6-C6H6)Ru(PPh3)(SnCl3)Cl] (1) and [(η6-PriC6H4Me)Ru(PPh3)(SnCl3)Cl] (2), the neutral di(trichlorostannyl) complex [(η6-PriC6H4Me)Ru(NCPh)(SnCl3)2] (3) could be obtained for the para-cymene derivative with benzonitrile as additional ligand. By contrast, the analogous reaction with the benzene derivative leads to a salt composed of the cationic mono(trichlorostannyl) complex [(η6-C6H6)Ru(NCPh)2(SnCl3)]+ (5) and of the anionic tris(trichlorostannyl) complex [(η6-C6H6)Ru(SnCl3)3] (6). On the other hand, [(η6-PriC6H4Me)Ru(μ2-Cl)Cl]2 reacts with SnCl2 and hexamethylenetetramine hydrochloride or 18-crown-6 to give the anionic di(trichlorostannyl) complex [(η6-PriC6H4Me)Ru(SnCl3)2Cl] (4), isolated as the hexamethylenetetrammonium salt or the chloro-tin 18-crown-6 salt. The single-crystal X-ray structure analyses of 1, 2, [(CH2)6N4H][4], [(18-crown-6)SnCl][4] and [5][6] reveal for all complexes a pseudo-tetrahedral piano-stool geometry with ruthenium-tin bonds ranging from 2.56 (anionic complexes) to 2.60 Å (cationic complex).  相似文献   

4.
The monocationic chloro complexes containing chelating 1,10-phenanthroline (phen) ligands [(arene)Ru(N∩N)Cl]+ (1: arene = C6H6, N∩N = phen; 2: arene = C6H6, N∩N = 5-NO2-phen; 3: arene = p-MeC6H4Pri, N∩N = phen; 4: arene = p-MeC6H4Pri, N∩N = 5-NO2-phen; 5: arene = C6Me6, N∩N = phen; 6: arene = C6Me6, N∩N = 5-NO2-phen; 7: arene = C6Me6, N∩N = 5-NH2-phen) have been prepared and characterised as the chloride salts. Hydrolysis of these chloro complexes in aqueous solution gave, upon precipitation of silver chloride, the corresponding dicationic aqua complexes [(arene)Ru(N∩N)(OH2)]2+ (8: arene = C6H6, N∩N = phen; 9: arene = C6H6, N∩N = 5-NO2-phen; 10: arene = p-MeC6H4Pri, N∩N = phen; 11: arene = p-MeC6H4Pri, N∩N = 5-NO2-phen; 12: arene = C6Me6, N∩N = phen; 13: arene = C6Me6, N∩N = 5-NO2-phen; 14: arene = C6Me6, N∩N = 5-NH2-phen), which have been isolated and characterised as the tetrafluoroborate salts. The catalytic potential of the aqua complexes 8-14 for transfer hydrogenation reactions in aqueous solution has been studied: complexes 12 and 14 catalyse the reaction of acetophenone with formic acid to give phenylethanol and carbon dioxide with turnover numbers around 200 (80 °C, 7 h). In the case of 12, it was possible to observe the postulated hydrido complex [(C6Me6)Ru(phen)H]+ (15) in the reaction with sodium borohydride; 15 has been characterised as the tetrafluoroborate salt, the isolated product [15]BF4, however, being impure. The molecular structures of [(C6Me6)Ru(phen)Cl]+ (1) and [(C6Me6)Ru(phen)(OH2)]2+ (12) have been determined by single-crystal X-ray structure analysis of [1]Cl and [12](BF4)2.  相似文献   

5.
The dinuclear dichloro complexes [(η6-arene)2Ru2(μ-Cl)2Cl2] and [(η5-C5Me5)2M2(μ-Cl)2Cl2] react with 2-(pyridine-2-yl)thiazole (pyTz) to afford the cationic complexes [(η6-arene)Ru(pyTz)Cl]+ (arene = C6H61, p-iPrC6H4Me 2 or C6Me63) and [(η5-C5Me5)M(pyTz)Cl]+ (M = Rh 4 or Ir 5), isolated as the chloride salts. The reaction of 2 and 3 with SnCl2 leads to the dinuclear heterometallic trichlorostannyl derivatives [(η6-p-iPrC6H4Me)Ru(pyTz)(SnCl3)]+ (6) and [(η6-C6Me6)Ru(pyTz)(SnCl3)]+ (7), respectively, also isolated as the chloride salts. The molecular structures of 4, 5 and 7 have been established by single-crystal X-ray structure analyses of the corresponding hexafluorophosphate salts. The in vitro anticancer activities of the metal complexes on human ovarian cancer cell lines A2780 and A2780cisR (cisplatin-resistant), as well as their interactions with plasmid DNA and the model protein ubiquitin, have been investigated.  相似文献   

6.
Reaction of Ph2PNHCH2-C4H3S with [Ru(η6-p-cymene)(μ-Cl)Cl]2, [Ru(η6-benzene)(μ-Cl)Cl]2, [Rh(μ-Cl)(cod)]2 and [Ir(η5-C5Me5)(μ-Cl)Cl]2 yields complexes [Ru(Ph2PNHCH2-C4H3S)(η6-p-cymene)Cl2], 1, [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2, [Rh(Ph2PNHCH2-C4H3S)(cod)Cl], 3 and [Ir(Ph2PNHCH2-C4H3S)(η5-C5Me5)Cl2], 4, respectively. All complexes were isolated from the reaction solution and fully characterized by analytical and spectroscopic methods. The structure of [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2 was also determined by single crystal X-ray diffraction. 1-4 are suitable precursors forming highly active catalyst in the transfer hydrogenation of a variety of simple ketones. Notably, the catalysts obtained by using the ruthenium complexes [Ru(Ph2PNHCH2-C4H3S)(η6-p-cymene)Cl2], 1 and [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2 are much more active in the transfer hydrogenation converting the carbonyls to the corresponding alcohols in 98-99% yields (TOF ≤ 200 h−1) in comparison to analogous rhodium and iridium complexes.  相似文献   

7.
The complex [Ru(CO)2(triphos-κ2P)Cl2] (1) underwent decarbonylation in dichloromethane solution under air over a period of about two weeks to afford the chelated monocarbonyl complex [Ru(CO)(triphos-κ3P)Cl2] (2). The Single Crystal X-ray structure of 2 showed a slightly distorted metal centred complex. The catalytic activity of one of the complexes [Ru(CO)(triphos-κ3P)Cl2] (2) was examined in the transfer hydrogenation of aromatic carbonyl compounds and was found to be efficient with conversion up to 100% in the presence of isopropanol/NaOH.  相似文献   

8.
Two neutral mono and dinuclear rhenium(V) complexes, cis-ReOCl2(P∼O)(pym) (1) and cis-[ReOCl2(P∼O)]2(μ–pym) (2 · (CH3)2CO), with the hydrospirophosphorane ligand HP∼O (HP∼O = octamethyl-2,2,3,3,7,7,8,8-tetraoxa-5λ5 1,4,6,9-phosphaspiro-4,4-nonane) have been prepared. The coordination geometry of the complexes has been determined in solution by NMR and UV–Vis spectroscopy, as well as in the solid state by IR, FIR spectroscopy and single crystal X-ray diffraction. The complexes display distorted octahedral geometries. X-ray structures of 1 and 2 reveal that the ReCl2NP fragments are equatorially disposed and the oxygens, terminal oxo and alcoholato, lie in axial positions. The pyrimidine coordinates as a monodentate or bridging ligand. Detailed temperature dependent 1H NMR analysis for both 1 and 2 shows that in solution the diaza moiety exhibits hindered rotation about the Re–N bond. Furthermore two concomitant conformation changes, one in the metallacycle and the second in the phosphorus cycle, are also observed for dimer 2.  相似文献   

9.
Hydrogen transfer reduction processes are attracting increasing interest from synthetic chemists in view of their operational simplicity. For this aim, a series of novel Ru(II) complexes with the P-N-P ligands were synthesized starting from the complex [Ru(η6-p-cymene)(μ-Cl)Cl]2 or [RuCp*Cl(COD)]. The complexes were fully characterized by analytical and spectroscopic methods. 31P-{1H} NMR, DEPT, 1H-13C HETCOR or 1H-1H COSY correlation experiments were used to confirm the spectral assignments. Complexes 5, 6 and 7 catalyze the transfer hydrogenation of acetophenone derivatives to 1-phenylethanol derivatives in the presence of iso-PrOH as the hydrogen source. Catalytic studies showed that all complexes are excellent catalytic precursors for the transfer hydrogenation of acetophenone derivatives in 0.1 M iso-PrOH solution. Notably 5 acts as an excellent catalyst giving the corresponding alcohols in excellent conversions up to 99% (TOF ≤ 492 h−1).  相似文献   

10.
A series of arene-ruthenium complexes of the general formula [RuCl26-C6H5(CH2)2R}L] with R=OH, CH2OH, OC(O)Fc, CH2OC(O)Fc (Fc=ferrocenyl) and L=PPh3, (diphenylphosphino)ferrocene, or bridging 1,1-bis(diphenylphosphino)ferrocene, have been synthesized. Two synthetic pathways have been used for these ferrocene-modified arene-ruthenium complexes: (a) esterification of ferrocene carboxylic acid with 2-(cyclohexa-1,4-dienyl)ethanol, followed by condensation with RuCl3 · nH2O to afford [RuCl26-C6H5(CH2)2OC(O)Fc}]2, and (b) esterification between ferrocene carboxylic acid and [RuCl26-C6H5(CH2)3OH}L] to give [RuCl26-C6H5(CH2)3OC(O)Fc}L]. All new compounds have been characterized by NMR and IR spectroscopy as well as by mass spectrometry. The single-crystal X-ray structure analysis of [RuCl26-C6H5(CH2)3OH}(PPh3)] shows that the presence of a CH2CH2CH2OH side-arm allows [RuCl26-C6H5(CH2)3OH}(PPh3)] to form an intramolecular hydrogen bond with a chlorine atom. The electrochemical behavior of selected representative compounds has been studied. Complexes with ferrocenylated side arms display the expected cyclic voltammograms, two independent reversible one-electron waves of the Ru(II)/Ru(III) and Fe(II)/Fe(III) redox couples. Introduction of a ferrocenylphosphine onto the ruthenium is reflected by an additonal reversible, one-electron wave due to ferrocene/ferrocenium system which is, however, coupled with the Ru(II)/Ru(III) redox system.  相似文献   

11.
Selective and efficient preparation of a new chiral dipalladium(0) complex with an olefinic macrocyclic ligand named (E,E,E,E,E,E)-1,6,11,16,21,26-hexakis[(4-methylphenyl)sulfonyl]-1,6,11,16,21,26-hexaazacyclotriaconta-3,8,13,18,23,28-hexaenedipalladium(0) (5) is reported. Dinuclear palladium(0) complex 5 has been fully characterized by means of NMR spectroscopy and X-ray diffraction analysis.  相似文献   

12.
Reactions of [PtMe3(OCMe2)3](BF4) and [(PtMe3I)4] with pyrazole (pzH) afforded mononuclear pyrazole platinum(IV) complexes [PtMe3(pzH)3](BF4) (1) and [PtMe3I(pzH)2] (2), respectively. The formation of dinuclear pyrazolato bridged platinum(IV) complexes (PPN)[(PtMe3)2(μ-pz)3] (3), (PPN)[(PtMe3)2(μ-I)(μ-pz)2] · 1/2Et2O (4) and [K(18C6)][(PtMe3)2(μ-I)(μ-pz)2] (5) was achieved by the reaction of each 1 and 2 with [PtMe3(OCMe2)3](BF4) in the presence of KOAc followed by reaction with (PPN)Cl (PPN+ = bis(triphenylphosphine)iminium cation) and 18C6, respectively. The reaction of complex 4 with AgO2CCF3 followed by addition of RSR′ (R/R′ = Me/Me, Me/Ph) resulted in the formation of complexes [(PtMe3)2(μ-pz)2(μ-RSR′)] (R/R′ = Me/Me, 6; Me/Ph, 7). All complexes were characterized unambiguously by microanalysis and NMR (1H, 13C) spectroscopic investigations. Additionally, crystal structures of complexes 3 and 4 as well as DFT calculation are presented. Furthermore, in vitro studies on the anti-proliferative activity of complexes 2 and 5 were carried out.  相似文献   

13.
A series of cationic, half-sandwich ruthenium complexes with the general formula [(η6-arene)RuCl(R1S-C6H4-2-CHNR2)]+ (arene = p-cymene or hexamethylbenzene; R1 = CH2Ph, iPr, or Et; R2 = aryl) have been prepared from the reaction of [(η6-arene)RuCl2]2 with various N,S-donor Schiff base ligands derived from 2-(alkylthio)benzaldehyde and several primary amines. All of the ruthenium complexes were characterized by IR, 1H NMR, electrochemistry, and UV/Vis spectroscopies. The p-cymene complexes undergo irreversible oxidations while the hexamethylbenzene complexes undergo quasi-reversible oxidations. The molecular structures of ligand 1a and complexes 4a, 4l, and 5e were determined by X-ray crystallography.  相似文献   

14.
Copper(II) complexes generalized as Cu2N6 and CuN6 were prepared by using hexadentate ligands, and their spectral and electrochemical behavior was analysed. X-ray analysis of binuclear [Cu2L2Cl2]2+ reveals that one copper is trigonal bipyramidal and the other is square pyramidal. Electronic spectra used to determine their stereochemistry in solution indicate that dinuclear Cu2N6 has two visible bands that correspond to a typical five-coordinate copper(II) environment, whereas only one broad band was obtained for mononuclear CuN6. When NaN3 was added to the dinuclear compounds, their UV–visible spectra underwent significant changes and an isosbestic point at 650?nm was observed; however, no such feature was encountered for the mononuclear compounds.  相似文献   

15.
Reactions of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me) and [(η5-C5Me5)M(μ-Cl)Cl]2 (M = Rh, Ir) with 2-substituted-1,8-naphthyridine ligands, 2-(2-pyridyl)-1,8-naphthyridine (pyNp), 2-(2-thiazolyl)-1,8-naphthyridine (tzNp) and 2-(2-furyl)-1,8-naphthyridine (fuNp), lead to the formation of the mononuclear cationic complexes [(η6-C6H6)Ru(L)Cl]+ {L = pyNp (1); tzNp (2); fuNp (3)}, [(η6-p-iPrC6H4Me)Ru(L)Cl]+ {L = pyNp (4); tzNp (5); fuNp (6)}, [(η5-C5Me5)Rh(L)Cl]+ {L = pyNp (7); tzNp (8); fuNp (9)} and [(η5-C5Me5)Ir(L)Cl]+ {L = pyNp (10); tzNp (11); fuNp (12)}. All these complexes are isolated as chloro or hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV/Vis spectroscopy. The molecular structures of [1]Cl, [2]PF6, [4]PF6, [5]PF6 and [10]PF6 have been established by single crystal X-ray structure analysis.  相似文献   

16.
The new potentially bidentate pyrazole-phosphinite ligands [(3,5-dimethyl-1H-pyrazol-1-yl)methyl diphenylphosphinite] (L1) and [2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyl diphenylphosphinite] (L2) were synthesised and characterised. The reaction of L1 and L2 with the dimeric complexes [Ru(η6-arene)Cl2]2 (arene = p-cymene, benzene) led to the formation of neutral complexes [Ru(η6-arene)Cl2(L)] (L = L1, L2) where the pyrazole-phosphinite ligand is κ1-P coordinated to the metal. The subsequent reaction of these complexes with NaBPh4 or NaBF4 produced the [Ru(η6-p-cymene)Cl(L2)][BPh4] and [Ru(η6-benzene)Cl(L2)][BF4] compounds which contain the pyrazole-phosphinite ligand κ2-P,N bonded to ruthenium. All the complexes were fully characterised by analytical and spectroscopic methods. The structure of the complex [Ru(η6-p-cymene)Cl(L2)][BPh4] was also determined by a X-ray single crystal diffraction study.  相似文献   

17.
The synthesis and characterisation of three novel mononuclear ruthenium(II) complexes containing one of the following chiral auxiliary ligands: 2-amino-(4R)-phenyl-2-oxazoline (amphox), indanyl-2-amino-(4R,5S)-2-oxazoline (aminox) or indanyl-(2′-anilinyl)-(4R,5S)-2-oxazoline (aninox) is described using [Ru2Cl46-p-cym)2] (p-cym = 1-isopropyl-4-methylbenzene) as the Ru starting material. The new complexes have been identified as the neutral derivatives [RuCl26-p-cym)(amphox-κ1Nox)] (1), [RuCl26-p-cym)(aminox-κ1Nox)] (2) and the salt [RuCl(η6-p-cym)(aninox-κ2N,N′)]Cl (3). These materials have been fully characterised (elemental analysis, NMR, IR, conductance, MS, etc.) and, in the case of 2 and 3, structurally elucidated in the solid-state using single crystal X-ray diffraction methods. All three complexes show good catalytic activity (max. conversion >99%, TOF = 424 h−1) but only modest enantio-selectivity (max. ee = 40%) for the transfer hydrogenation reaction of acetophenone with isopropyl alcohol. The complexes were also tested in an asymmetric Diels-Alder reaction involving cyclopentadiene and acrolein (max. conversion >99%, TOF = 42 h−1). In this case, the diastereo-selectivity was good to moderate (max. de = 84%), but the ee values were poor (max. ee = 12%).  相似文献   

18.
Mono- and dinuclear ruthenium(II) complexes of six bridging ligands that contain a central arene (phenyl, naphthalenyl or biphenyl) core to which are attached two di-2-pyridylamine groups have been prepared. These complexes possess six-membered chelate rings. Full assignments of their 1H NMR spectra are described which provides insight into the comformations of the ligands in these complexes. The extent of metal–metal communication in the dinuclear complexes was probed by electrochemical measurements and related to metal–metal distances.  相似文献   

19.
Racemic planar chiral (η6-aryl ketone)Cr(CO)3 complexes (aryl ketone = 1-indanone, 1-tetralone, 4-chromanone and thiochroman-4-one) were prepared by refluxing the aryl ketone with Cr(CO)6 in a 10:1 mixture of dibutyl ether and THF. The reductions of the organometallic ketones by transfer hydrogenation in 2-propanol containing KOH and the catalyst precursor, generated from [RuCl26-benzene)]2 and (−)-ephedrine, resulted in optically active syn-(R,S)-(η6-aryl alcohol)Cr(CO)3 and (R)-(η6-aryl ketone)Cr(CO)3 compounds in 31-97% ee. Reduction of racemic (η6-thiochroman-4-one)Cr(CO)3 with the catalyst precursor generated from (+)-norephedrine, instead of (−)-ephedrine, inverted the configuration of the products obtained. Syn-(S,R)-(η6-thiochroman-4-ol)Cr(CO)3 and (S)-(η6-thiochroman-4-one)-Cr(CO)3 were isolated in 49% and >95% ee, respectively. The free aryl ketones were reduced using the same conditions as their respective chromium complexes, giving aryl alcohols in high ee (>95%). Reactions of non-rigid acetophenone, propriophenone and their tricarbonylchromium complexes resulted in moderate to low ee.  相似文献   

20.
A series of novel dinuclear platinum(II) complexes with a chiral tetradentate ligand, (1R,1′R,2R,2′R)-N1,N1′-(1,2-phenylenebis(methylene))dicyclohexane-1,2-diamine (HL), and mono-carboxylic acid derivatives as ligands have been designed, synthesized, and characterized. In vitro cytotoxicity evaluation of synthesized complexes against human HepG-2, A549, HCT-116, and MCF-7 cancer cell lines has been conducted by MTT assays. All compounds showed antitumor activity to HepG-2 and HCT-116 cell lines. Compound L2 exhibited better cytotoxicity than that of carboplatin against HepG-2 and A549 cell lines and also showed comparable activity against HCT-116 cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号