首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Four platinum(II) complexes, [PtCl2L] (L = (4-fluorophenyl)pyridin-2-ylmethylene-amine, 1; (4-chlorophenyl)pyridin-2-ylmethyleneamine, 2; (4-bromophenyl)pyridin-2-ylmethyleneamine, 3 and (4-iodophenyl)pyridin-2-ylmethyleneamine, 4) have been synthesized and characterized by CHN analysis, IR and UV–Vis spectroscopy. The crystal structures of 1 and 2 were determined using single crystal X-ray diffraction. The coordination polyhedron about the platinum (II) center in the complexes is best described as distorted square planar. The complexes undergo stacking to form a zigzag Pt···Pt···Pt chain containing both short (3.57(7) Å in 1 and 3.62(8) Å in 2) and long (5.16(7) Å in 1 and 5.41(9) Å in 2) Pt···Pt separations through the crystal. The compounds absorb moderately in the visible region, owing to a charge-transfer-to-diimine electronic transition. The redox potentials are approximately insensitive to the substituents on the phenyl ring of the ligands.  相似文献   

3.
Copper(I) complexes including diimine ligands of the bicinchoninic acid (BCA) and bathocuproinedisulfonic acid (BCS) families and water-soluble phosphines have been synthetized, characterized and investigated for their in vitro anticancer potential against human tumor cell lines representing examples of lung, breast, pancreatic and colon cancers and melanoma. All copper complexes exhibited moderate to high cytotoxic activity and the ability to overcome cisplatin resistance. Remarkably, growth-inhibitory effects evaluated in human non-transformed cells revealed a preferential cytotoxicity versus neoplastic cells. The remarkable cytotoxic effect towards BxPC3 pancreatic cancer cells, notoriously poor sensitive to cisplatin, was not related to a DNA or proteasome damage.  相似文献   

4.
5.
Copper(I) halide complexes having thermally activated delayed fluorescence (TADF) and phosphorescence have attracted much attention. Here, a series of four-coordinate dinuclear copper(I) halide complexes, [CuX(bpbp)]2 (bpbp = 2,2′-bis(diphenylphosphino)biphenyl, X = I (1), Br (2) and Cl (3)), were synthesized, and their molecular structures and photophysical properties were investigated. The structural analysis reveals that two copper(I) centers are bridged by two halogen ligands to form a dinuclear structure with a four-membered Cu2X2 ring. These complexes exhibit yellow to blue emission in the solid state at room temperature and have peak emission wavelengths at 575–487 nm with microsecond lifetimes (τ = 6.2–19.8 μs) and low emission quantum yields (<0.01%). The emissions of 13 originate from MLCT, XLCT, and IL (intraligand) transitions. Three complexes displayed good thermal stability.  相似文献   

6.
Two ligands, N,N′-bis[1-(4-chlorophenyl)ethylidene]ethane-1,2-diamine (L1 ) and N,N′-bis- [1-(4-nitrophenyl)ethylidene]ethane-1,2-diamine (L2 ) and their corresponding copper(I) complexes, [Cu(L 1)2]ClO4 (1) and [Cu(L 2)2]ClO4 (2), have been synthesized and characterized by CHN analyses, 1H-NMR, IR, and UV–Vis spectroscopy. The crystal structures of L1 and [Cu(L 1)2]ClO4 (1) were determined from single crystal X-ray diffraction. L1 lies across a crystallographic inversion center and the C=N is approximately coplanar with the benzene ring and adopts E configuration. The coordination polyhedron about copper(I) in 1 is best described as a distorted tetrahedron. Quasireversible redox behavior is observed for the complexes.  相似文献   

7.
The syntheses, structures and spectroscopic properties of tricarbonylrhenium(I) complexes with N,N′-bis(2-bromo, 4-bromo, 4-chloro and 3-methoxybenzaldehyde)-1,2-diiminoethane Schiff base ligands have been investigated in this paper. Characterization of these complexes was carried out with FTIR, NMR, UV–Vis spectroscopy, elemental analysis and X-ray crystallography. The electrochemical behavior of the investigated complexes has been studied by cyclic voltammetry. The crystal structures of the 4-chloro, 4-bromo and 4-methoxy substituted complexes are stabilized by intermolecular C–H?Cl and C–H?O hydrogen bonds. The remarkable features of the 2-bromo, 4-bromo and 4-chloro substituted complexes are short intermolecular halogen–oxygen contacts. In the 4-bromo complex, short intermolecular Br?O and O?O contacts link neighboring molecules along the [1 0 0] direction, which are further stabilized by short intermolecular π?π interactions. In 2-bromo complex, intermolecular Br?O interactions link neighboring molecules into 1D extended chains along the [0 1 0] and [0 0 1] directions, forming a 2D network which is parallel to the bc-plane.  相似文献   

8.
Some copper(I) complexes of the formula [Cu(L)(PPh3)2]X (1-4) [where L = 2-phenyl-3-(benzylamino)-1,2-dihydroquinazolin-4(3H)-one; PPh3 = triphenylphosphine; X = Cl, NO3, ClO4 and BF4] have been prepared and characterized on the basis of elemental analysis, IR, UV-Vis and 1H NMR spectral studies. The representative complex of the series 4 has been characterized by single crystal X-ray diffraction which reveal that in the complex the central copper(I) ion assumes the irregular distorted-tetrahedral geometry. Cyclic voltammetry of the complexes indicate a quasireversible redox behavior corresponding to Cu(II)/Cu(I) couple. All the complexes exhibit intraligand (π → π) fluorescence with high quantum yield in dichloromethane solution.  相似文献   

9.
Synthesis and characterization of four new 2,6-dimethoxynicotinate (2,6-(MeO)2nic) copper(II) monomeric complexes [Cu(2,6-(MeO)2nic)2(py)2] (py is pyridine), [Cu{2,6-(MeO)2nic}2(Etnic)2(H2O)] (Etnic is ethylnicotinate), [Cu{2,6-(MeO)2nic}2(Et2nia)2(H2O)2] (Et2nia is N,N-diethylnicotinamide) as well as of the polymeric complex [Cu{2,6-(MeO)2nic}2(ron)2] n (ron is ronicol) are reported. The characterizations were based on elemental analysis, infrared, electronic and EPR spectra. Crystal structures of two of the complexes have been determined. The copper(II) of [Cu{2,6-(MeO)2nic}2(py)2] has a distorted tetragonal-bipyramidal (4 + 2) coordination environment. Both 2,6-(MeO)2nic anions are asymmetrically chelating. The Cu(II) of [Cu{2,6-(MeO)2nic}2(Etnic)2(H2O)] is pentacoordinate in a slightly distorted tetragonal-pyramidal arrangement by two trans nitrogens, each of one Etnic, by two oxygens, each of the carboxyl group of one unidentate 2,6-(MeO)2nic and the axial position occupied by water at a longer distance. Antimicrobial effects of the complexes have been tested on various strains of bacteria, yeasts and filamentous fungi. While the 2,6-(MeO)2nicH alone did not influence the model bacteria growth, dimeric [Cu{2,6-(MeO)2nic}2(H2O)]2 and polymeric [Cu{2,6-(MeO)2nic}2(ron)2] n have pronounced influence on the growth of Staphylococcus aureus, Escherichia coli and Candida parapsilosis.  相似文献   

10.
《Polyhedron》2000,19(28):2689-2695
The reaction of an ethanolic solution of copper(II) pyridinecarboxylates CuX2·nH2O (where X is nicotinate (nic) (n=0) or isonicotinate (isonic) (n=4)) with ethylenediamine (en) in a molar ratio of 1:2 lead to the isolation of solid tetragonally distorted octahedral complexes of the type [Cu(en)2(H2O)2]X2·nH2O (n=1 for nic; n=0 for isonic). The analogous reaction of CuX2·nH2O with diethylenetriamine (dien) in a molar ratio of 1:1 leads to the formation of square-pyramidal pentacoordinated complexes of the type [CuX(dien)(H2O)]X. On the other hand, the reaction of equimolar quantities of copper(II) nitrate and dien with nicotinate anions (equimolar quantities of pyridinecarboxylic acid and NaOH) in ethanolic solutions gives a solid monomeric complex [Cu(nic)(NO3)dien)(H2O)]·H2O in which the coordination polyhedron around the Cu(II) atom is a (4+1+1) distorted tetragonal bipyramid. Based on the molecular structure the electronic and IR spectra are discussed. Moreover, the results of the quantitative determination of antimicrobial activity of the isonic complexes [Cu(isonic)2(H2O)4], [Cu(en)2(H2O)2](isonic)2, [Cu(isonic)(dien)(H2O)](isonic), as well as isonicotinic acid, ethylenediamine and diethylenetriamine alone are discussed.  相似文献   

11.
A one pot, multi-component CuAAC reaction has been developed for the generation of alkyl, benzyl or aryl substituted bi and tridentate pyridyl-1,2,3-triazole ligands from their corresponding halides, sodium azide and alkynes in excellent yields. The ligands have been fully characterized by elemental analysis, HR-ESMS, IR, 1H and 13C NMR and in the ferrocenyl substituted cases the structures were confirmed by X-ray crystallography. Additionally, we have examined the coordination chemistry of these ligands and found that a variety of geometrically diverse Cu(II) and Ag(I) complexes, including interesting tri and tetrasilver complexes, can be formed.  相似文献   

12.
The reactions between five ferrocenyl derivatives containing both a CO and at least an imidazole or pyridine nitrogen atom and AgPF6, AgOTf, or [Cu(NCCH3)4]PF6 precursors were studied. The ligand {[bis(2-pyridyl)amino]carbonyl}ferrocene (L3), derived from (2-pyridyl)amine, favored tetrahedral coordination of Ag+ (with two ligands) and of Cu+ (with two acetonitrile ligands left from the precursor). In all the other ligands, both metal centers coordinated linearly to two ligands, preferring the imidazole or pyridinic nitrogen to other nitrogen atoms (amine) or oxygen donors.When the counter anions were triflate, the crystal structure showed a dimerization of the complex, with the ferrocenyl moieties occupying cis positions, by means of a weak Ag?Ag interaction. This was shown experimentally in the crystal structure of complex [Ag(L1)2]OTf (L1 = ferrocenyl imidazole) and in the presence of peaks corresponding to {Ag2(L2)3(OTf)}+ and {Ag2(L2)4(OTf)}+ in the mass spectra of [Ag(L2)2]OTf (L2 = ferrocenyl benzimidazole). In all complexes containing PF6, there was no evidence for dimerization. Indeed, in the crystal structure of [Ag(L2)2]PF6, the ferrocenyl moieties occupy trans positions and the metal centers are far from each other. DFT calculations showed that the energy of the cis and trans conformers is practically the same and the balance of crystal packing forces leads to dimerization when triflate is present.  相似文献   

13.
Mixed-ligand Cu(I) complexes containing phosphinesulfide ligands were synthesized, and the structure and emission properties were studied for the Cu(I) complexes. X-ray crystallographic study showed that a chelating phosphinesulfide and diimine are coordinated to Cu(I) center. Coordination geometry around Cu(I) center of each complex is described as a distorted tetrahedron. Some of the complexes show photoluminescence in the solid state.  相似文献   

14.
Three new copper(II) complexes [Cu(PSBP)2](NO3)(BF4) (1), [Cu(DAPBMA)2](BF4)2 (2), and [Cu(ImH)4(NO3)2] (3), where PSBP = 4-phenylsemicarbazide-2-benzoylpyridine, DAPBMA = 2,6-diacetylpyridine-bis-4-methoxyaniline, and ImH = Imidazole, have been synthesized and characterized by elemental analysis, FAB mass spectrometry, magnetic susceptibility, X-band electron paramagnetic resonance (EPR), electronic spectroscopy, and cyclic voltammetry. Frozen solution EPR spectra of the complexes have axial features with g > g > 2.003 suggesting the presence of a d x 2? y 2 ground state. Single crystal X-ray analyses of 13 reveal the presence of distorted octahedral geometry. All complexes exhibit significant superoxide dismutase activity.  相似文献   

15.
The air-stable di-copper(I) complexes Cu2L(SCN)2 (1) and Cu2L(SCN)1.86I0.14 (2) of the N4 macrocyclic Schiff base ligand L have been synthesized and characterized by IR, elemental analysis, UV-Vis and crystal structure determination. X-ray analysis of the complexes shows an approximate distorted trigonal planar geometry around each copper(I) ion that is constructed from one N-bonded thiocyanate (or iodide in 2) group and two imine nitrogen atoms. DFT calculations were used to determine the structural features of the Cu2L(SCN)2 complex, and these were consistent with the experimental data for the complex.  相似文献   

16.
Three mono-, bi- and tetranuclear copper(I) complexes, [Cu(phen)(triphos-O)]BF4 (1) (phen = 1,10-phenanthroline, triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane), [Cu2(bipy)(triphos)2](BF4)2 (2) (bipy = 4,4′-bipyridine), and [Cu4(MeOC^N^N)4(triphos)2(bipy)](BF4)4 (3) (MeOC^N^N = 6-(4-methoxyphenyl)-2,2′-bipyridine), have been synthesized and characterized by NMR spectroscopy, electrospray ionization, and matrix-assisted laser desorption ionization time-of-flight mass spectrometries, elemental analysis, and X-ray crystal analysis. The crystal structure investigation revealed the copper ions of the complexes have pseudo-tetrahedral coordination geometry. The electronic absorption spectra of 1, 2, and 3 contain low-energy bands at 350–500 and 400–650 nm, which are assigned to d(Cu) → π*(phen or bipy) and a mixture of d(Cu) → π*(MeOC^N^N) and d(Cu) → π*(bipy) transitions, respectively. Complex 2 displays a strong, long-lived solid-state emission with a maximum at 555 nm and lifetime of 13.6 μs at room temperature. Photoinduced electron-transfer properties of 2 and 3 involving nanosecond time-resolved absorption spectroscopy and electron spin resonance techniques were studied.  相似文献   

17.
Two mixed-ligand Cu(II) complexes, [CuL1(Himdz] · CH3OH (1) and [CuL2(phen)] · 0.5DMF (2), with different structures have been synthesized by using substituted aroylhydrazones, 5-bromo-salicylaldehyde-benzoylhydrazone (H2L1) and 5-bromo-salicylaldehyde-3,5-dimethoxy-benzoylhydrazone (H2L2), and mono/bidentate heterocycles, imidazole (Himdz) and 1,10-phenanthroline (phen). Their crystal structures and spectroscopic properties have been studied. X-ray analysis show a distorted square-planar geometry for 1 and a distorted square-pyramidal geometry for 2, in which the chelating phen ligand displays axial-equatorial bonding. In both structures the ONO tridentate ligand occupies the basal plane. Self-assembly via O–H ··· N, N–H ··· O and C–H ··· O interactions lead to one-dimensional chain arrangement in 1 and 2.  相似文献   

18.
An interesting series of nine new copper(II) complexes [Cu2L2(OAc)2]·H2O (1), [CuLNCS]·½H2O (2), [CuLNO3]·½H2O (3), [Cu(HL)Cl2]·H2O (4), [Cu2(HL)2(SO4)2]·4H2O (5), [CuLClO4]·½H2O (6), [CuLBr]·2H2O (7), [CuL2]·H2O (8) and [CuLN3]·CH3OH (9) of 2-benzoylpyridine-N(4)-phenyl semicarbazone (HL) have been synthesized and physico-chemically characterized. The tridentate character of the semicarbazone is inferred from IR spectra. Based on the EPR studies, spin Hamiltonian and bonding parameters have been calculated. The g values, calculated for all the complexes in frozen DMF, indicate the presence of the unpaired electron in the dx2-y2 orbital. The structure of the compound, [Cu2L2(OAc)2] (1a) has been resolved using single crystal X-ray diffraction studies. The crystal structure revealed monoclinic space group P21/n. The coordination geometry about the copper(II) in 1a is distorted square pyramidal with one pyridine nitrogen atom, the imino nitrogen, enolate oxygen and acetate oxygen in the basal plane, an acetate oxygen form adjacent moiety occupies the apical position, serving as a bridge to form a centrosymmetric dimeric structure.  相似文献   

19.
Six new copper(II) complexes of 2-hydroxyacetophenone-N(4)-phenyl semicarbazone have been synthesized and physico-chemically characterized. The tridentate character of the semicarbazone is inferred from IR spectra. Based on EPR studies, the spin Hamiltonian and bonding parameters have been calculated. The g   values, calculated for all the complexes in frozen DMF, indicate the presence of the unpaired electron in the dx2-y2dx2-y2 orbital. The metal–ligand bonding parameters evaluated showed strong in-plane σ and in-plane π-bonding. The structure of the compound, CuLphen has been resolved using single crystal X-ray diffraction studies. The crystal structure revealed a monoclinic lattice with space group symmetry P21/c. The compound adopts a distorted square pyramidal geometry with a N2O2 core as the base.  相似文献   

20.
Four novel ON donor Schiff bases (E)-3-((4-phenoxyphenylimino)methyl)benzene-1,2-diol (HL1),(E)-3-((4-(4-biphenyloxy)phenyliminomethyl)benzene-1,2-diol (HL2), (E)-3-((4-naphthoxyphenylimino)methyl)benzene-1,2-diol (HL3), (E)-3-((4-(2-naphthoxy)phenylimino)methyl)benzene-1,2-diol (HL4) and their copper(II) complexes bis((E)-3-((4-phenoxyphenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L1)2) bis((E)-3-((4-(4-biphenyloxy)phenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L2)2), bis((E)-3-((4-naphthoxyphenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L3)2), bis((E)-3-((4-(2-naphthoxy)phenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L4)2) have been synthesized and characterized by spectroscopic (FTIR, NMR, UV–visible) and elemental analysis. The crystal structures of HL1, HL2, HL3, and HL4 have been determined, which reveal intramolecular N-H?O (HL1, HL2, HL3, and HL4) hydrogen bonds in the solid state. Keto-amine and enol-imine tautomerism is exhibited by the Schiff bases in solid and solution states. The Schiff bases and their copper(II) complexes have been screened for their biological activities. In antimicrobial assays (antibacterial and antifungal), HL4 showed promising results against all strains through dual inhibition property while the rest of the compounds showed activity against selective strains. On the other hand, in cytotoxic, DPPH, and inhibition of hydroxyl (OH) free radical-induced DNA damage assays, the results were found significantly correlated with each other, i.e. the ligands HL1 and HL2 showed moderate activity while their complexes Cu(L1)2 and Cu(L2)2 exhibited prominent increase in activity. As the results of these assays are supporting each other, it represents the strong positive correlation and antioxidant nature of investigated compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号