首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transition Metal Chemistry - Metal complexes 1–9 have been synthesized by reacting the benzothiazole–pyrazole derivative ligands (L1, L2 and L3) with the metal precursors of ruthenium...  相似文献   

2.
Complexes of the[Al(L-H)(OH)Cl],[M(L-H)(H2O)2- (OH)Cl] and [M(L-H)(L-H)(H2O)Cl] type, where L = uracil (URL); L = histidine (HISD); M = CrIII or FeIII and M = AlIII, CrIII or FeIII were synthesized and characterized. The complexes are polymers, with high decomposition points and are insoluble in water and common organic solvents. Uracil is coordinated to the metal ion through the O atom of C(4)-O and the N atom of N(1), while histidine coordinates through the O atom of -CO2– and the N atom of the -NH2 groups. The eff values, electronic spectral bands and e.s.r. spectra suggest a polymeric six coordinate spin-free octahedral stereochemistry for the CrIII and FeIII complexes. The in vivo and in vitro antitumour activity results indicate that CrIII and FeIII complexes have significant activity against P815 murine mastocytoma but AlIII complexes show poor activity.  相似文献   

3.
In the present study influence of nature of selected cyclodextrins (CDs) and of methods of preparation of drug–CD complexes on the oral bioavailability, in vitro dissolution studies and pharmacodynamic activity of a sparingly water soluble drug rosuvastatin (RVS) was investigated. Phase solubility studies were conducted to find the interaction of RVS with β-CD and its derivatives, which indicated the formation of 1:1 stoichiometric inclusion complex. The apparent stability constant (K1:1) calculated from phase solubility diagram were in the rank order of β-CD < hydroxypropyl-β-cyclodextrin (HP-β-CD) < randomly methylated-β-cyclodextrin (RM-β-CD). Equimolar drug–CD solid complexes prepared by different methods were characterized by the Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). FTIR study demonstrated the presence of intermolecular hydrogen bonds and ordering of the molecule between RVS and CDs in inclusion complexes. DSC and XRD analysis confirmed formation of inclusion complex by freeze dried method with HP-β-CD and RM-β-CD. Aqueous solubility and dissolution studies indicated improved dissolution rates of prepared complexes in comparison with drug alone. Moreover, CD complexes demonstrated of significant improvement in reducing total cholesterol and triglycerides levels as compared to pure drug. However the in vivo results only partially agreed with those obtained from phase solubility studies.  相似文献   

4.
The new heteroleptic iridium(III) complexes (BuOXD)2Ir(tta) and (BuOXD)2Ir(tmd) [BuOXD?=?2-(4-butyloxyphenyl)-5-phenyl[1,3,4]oxadiazolato-N4,C2, tta?=?1,1,1-trifluoro-4-thienylbutane-2,4-dionato, tmd?=?2,2,6,6-tetramethylheptane-3,5-dionato] have been synthesized and characterized. These complexes have two cyclometalated ligands (C^N) and a bidentate diketone ligand (X) [C^N)2Ir(X)], where X is a β-diketone with trifluoromethyl, theonyl or t-butyl groups. The color tuning with the change in electronegativity of substituents in the β-diketones has been studied. Photoluminescence spectra of the complexes showed peak emissions at 523 and 549?nm, respectively. The electroluminescent properties of these complexes have been studied by fabricating multi layer devices with device structure ITO/α-NPD/8% iridium complex doped CBP/BCP/Alq3/LiF/Al. The electroluminescence spectra also showed peak emissions at 526 and 570?nm for (BuOXD)2Ir(tta) and (BuOXD)2Ir(tmd), respectively. These metal complexes showed good thermal stability in air to 340°C.  相似文献   

5.
New bisazo–bisazomethine disperse dyes were prepared by the coupling of diazotized solutions of various aromatic amines with 2,2′-{methylenebis[4,1-phenylenenitrilomethylylidene]}diphenol (Schiff base). Schiff base (SB) was prepared by the condensation of 2-hydroxybenzaldehyde with 4,4′-diaminodiphenylmethane (DDM). The resultant dyes were characterized by elemental analysis, IR and 1H NMR spectral studies. The UV–visible absorption spectral data were investigated in dimethylformamide (DMF) and are discussed in terms of structure property relationship. The dyes when applied on polyester fabric, gave golden yellow to reddish brown shades having fairly good to good light fastness, very good to excellent washing, perspiration and sublimation fastness and good to very good rubbing fastness properties.  相似文献   

6.
Three Keggin-type polyoxometalates functionalized by amino acids, (C5H13N2O2)2(H3O)PMo12O40·8H2O 1, (C5H14N2O2)2SiMo12O40·12H2O 2 and (C5H14N2O2)2GeMo12O40·12H2O 3, were synthesized and characterized by elemental analysis, IR and 1H?NMR spectra and single-crystal X-ray diffraction. The X-ray crystallographic study showed that the structures of the three compounds involved N–H···O and O–H···O hydrogen bonds among the protonated ornithine cations, water molecules and the heteropolyanion cluster, and thus represent a model interaction between polyoxometalates and proteins. These complexes display inhibitory actions to the human cancer cells Hela and PC-3?m in vitro.  相似文献   

7.
8.
9.
The current study reports the synthesis of a curcumin–silver(I) complex and its preliminary tests against four bacterial strains viz. Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Bacillus cereus using agar well diffusion method. The results were compared with curcumin by testing it in parallel with the sample. Curcumin showed zones of inhibition against all tested strains of bacteria. Among all bacterial strains, S. aureus was the most sensitive to curcumin with zone of inhibition of 12.2 mm. However, the curcumin–Ag(I) complex did not show the expected enhanced activity against all bacteria. This is perhaps due to the replacement of curcumin phenolic protons by silver ions which might have suppressed the antibacterial property of curcumin. The current research findings suggest that while synthesizing curcumin–metal complexes, the phenolic heads may either be left unaltered or need to be replaced by better substituents than hydroxy groups. Based on the current findings, biologically enhanced models have been provided as future recommendations.  相似文献   

10.
11.
At room temperature, dibenzoyl peroxide undergoes oxidative addition reaction with metallic copper powder and pyridine N-oxide (triphenylphosphine oxide or 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolin) which affords the last products as binuclear copper(II) complexes, [Cu(C5H5NO)-(C6H5COO)2]2(1), [Cu(OPPh3)(C6H5COO)2]2(2) and [Cu(C6H5COO)(C26H2oN2)](3, C26H2oN2 is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolin). The structure of the complexes were characterized by elemental analyses, IR spectra, TG-DTA and magnetic property. Crystals(1) are triclinic, space group P1,a=0.92617(36),b=1.06973(17), c=1.08813(29) nm, a=59.60(2)°, β=74.83(3)°,γ=72.80(2)°, V=0.880 nm3, Dc=1.520 g/cm3, Z=1, R=0.044, Rw=0.048, Mr=805.78, 3477 reflections with I > 3σ(I). Each copper(Ⅱ) ion is coordinated by two bridging bidentate benzoate ligands and one pyridine N-oxide or triphenylphosphine oxide to form dimeric binuclear molecules. The structure of the compound(1) shows a clear centre of symmetry.  相似文献   

12.
Research on Chemical Intermediates - Firstly, thiosemicarbazides were prepared by the reaction of hydrazine monohydrate with isothiocyanates in cold dry ethanol at 0&nbsp;°C for...  相似文献   

13.
A series of homoleptic lanthanide guanidinate (guan)3Ln · ((C2H5)2O)n (Ln=Yb, n=1 guan=(CyN)2CNiPr2, (1); Ln=Nd, n=0, guan=(CyN)2CNiPr2, (2); (iPrN)2CNiPr2, (3); (iPrN)2CN(CH2)5, (4)); (iPr=isopropyl, Cy=Cyclohexyl) were synthesized by the reaction of THF solution of lithium guanidinate with anhydrous lanthanide trichlorides in THF in 3:1 molar ratio. The molecular structures of 2 and 3 were determined to be monomeric in solid state with a six coordinate lanthanide metal ligated by six nitrogens of three guanidinate groups. All the complexes exhibited extremely high activity for the ring-opening polymerization of ε-caprolactone and the polymerization gave the polymers with high molecular weights. The different substituents at guanidino ligands have great effect on the catalytic activity. The mechanism of the polymerization was presented.  相似文献   

14.
New homoleptic zinc(II) complexes, [Zn(L)2], where L = methyl-3-hydroxy-(3-pyridyl)-2-propenedithioate L1 1, and methyl-3-hydroxy-(4-pyridyl)-2-propenedithioate L2 2, have been synthesized and characterized by elemental (C, H, and N) analysis, ESI-MS, and (IR, UV–vis, NMR) spectroscopy; the structure of 1 has been deduced by X-ray crystallography. The DNA binding and cleavage activity of the complexes have been studied. The cleavage potential of pBR322 DNA by 1 and 2 has been checked. Complex 1, which contains nitrogen of the pyridine group in the 3-position enhances DNA cleavage potential in the presence of ascorbic acid; however, the complex is protective against DNA cleavage in the presence of DMSO or H2O2. Also, 1 causes cytotoxicity against the MCF-7 breast cancer cell line. The efficient cytotoxic activity and DNA cleavage ability of 1 in the presence of ascorbic acid shows its potential anticancer properties and the need for further investigations of its potential as an anticancer drug.  相似文献   

15.
Abstract

This study was conducted to prepare new complexes and their metal-based nanodrugs in order to reduce the growth of human carcinoma cell lines. For this purpose, an extensive study was performed. First, the mixed-chelate Cu(II) complexes Casiopeínas® ([Cu(TTA)(phen)(C1O4)] 1 and [Cu(TTA)(phen)(N3)Cu(TTA)(phen)H2O] (C1O4)·H2O 2 (TTA = 4,4,4-trifluoro-1-(2-furyl)-1,3-butanedione) were synthesized and characterized by X-ray, FT-IR, UV–Vis spectroscopy, conductivity measurements, diffuse reflection spectroscopy and elemental analysis studies. Complexes 1 and 2 exhibited tetragonal pyramidal geometry. In the following, nanoparticles (NPs) of complexes 3 and 4 with the average size of 81 and 33?nm, respectively, were prepared by an ultrasonic process. Scanning Electron Microscope (SEM) images of samples 3 and 4 showed that the morphologies of the obtained materials are rod and sphere, respectively. Furthermore, the cytotoxic activity of complexes and nanoparticles was investigated against MKN-45 cell lines. The cell proliferation was inhibited for all compounds and nanocompounds in a dose-dependent manner 1?>?2 > 3?>?4 on MKN-45 cells. Finally, docking calculations were performed to describe the mode of binding to DNA of these complexes. Docking simulations suggested that the compounds bind in the minor groove and preferentially bind to A-T base pair regions. Both complexes also interacted with DNA through one hydrogen-bond.  相似文献   

16.
Isonicotinic acid hydrazide or isonicotinylhydrazide, commonly known as isoniazid, is an antibacterial agent that has been used to treat tuberculosis. It interacts with microbial cell walls. Schiff’s bases or anils are the compounds having >C=N−N< linkages, which have immense applications as catalysts, stabilizers, pigments, dyes, and drugs. They have good ability to form chelates with many metal ions. Isoniazid can form Schiff’s bases with diketones such as acetoacetanilide. Acetoacetanilide isonicotinylhydrazone and its metal chelates exhibit anticancer activity. Our studies on N-methyl-acetoacetanilide isonicotinylhydrazone and its metal chelates revealed that they are active against pathogenic fungal strains. Hence, it is worthwhile to synthesize new complexes of ligands having different substituents on the acetoacetanilide moiety. We synthesized five new metal chelates of ω-bromoacetoacetanilide isonicotinylhydrazone. The ligand behaved as a tridentate monoanion or as a tridentate dianion in the complexes. These compounds were characterized mainly by elemental analysis; conductivity measurements; and electronic, infrared, and nuclear magnetic resonance spectral studies. We also carried out antifungal studies of these compounds against four selected pathogenic fungal strains using a cup-plate technique. Both the ligand and its metal chelates were active against all fungal strains investigated. However, the chelates were found to be more active than the ligand.  相似文献   

17.
In this work, we describe the syntheses, characterization, and antifungal activity of [In{S2CNR(R1)}3] (1), [Ga{S2CNR(R1)}3] (2), [Bi{S2CNR(R1)}3] (3), [In{S2CNR(R2)}3] (4), [Ga{S2CNR(R2)}3] (5), and [Bi{S2CNR(R2)}3] (6) {R?=?Me; R1?=?CH2CH(OMe)2; and R2?=?2-methyl-1,3-dioxolane}. All complexes have been characterized using infrared and 1H and 13C spectroscopy, and the structures of 1, 3, 4, and 6 have been authenticated by X-ray diffraction. The In(III)–dithiocarbamate bonding scheme depicts a distorted octahedral with asymmetric In(III)–S bonds and S–In–S angles. A pentagonal bipyramid is observed for the corresponding Bi(III) complexes with intermolecular Bi–S associations through the lone pair of electrons. The antifungal activities of 1–6 have been screened against Aspergillus niger, Aspergillus parasiticus, and Penicillium citrinum, and the results have been compared with those of nystatin and miconazole nitrate, as control drugs.  相似文献   

18.
19.
Reaction of the parent complex (μ-PDT)Fe2-(CO)6 (A) (PDT = 1,3-SCH2CH2CH2S2?) with the bidentate N/P ligand [(Ph2P)2N(C6H4Cl-p)] in the presence of Me3NO as decarbonylating agent produced an unexpected iron–sulfur complex [(μ-PDT)Fe2(CO)5{PPh2(NHC6H4Cl-1,4)}] (1). Extending this chemistry further, two similar complexes [(μ-PDT)Fe2(CO)5{PPh2(NHC6H4NO2-1,4)}] (2) and [(μ-PDT)Fe2(CO)5{PPh2(NHC6H4CO2Et-1,4)}] (3) could be prepared from the simple substitution reactions of the precursor A with the monodentate N/P ligands Ph2P(NHC6H4NO2-1,4) and Ph2P(NHC6H4CO2Et-1,4), respectively. These new complexes, which can be considered as active site models of [FeFe] hydrogenases, have been characterized by elemental analysis, FTIR, and NMR (1H, 13C, 31P) spectroscopies, as well as by X-ray crystallography for complex 1.  相似文献   

20.
Two mixed porphyrin–polypyridyl RuII complexes [Ru(bpy)2(MPyTPP)Cl]Cl (1) and [Ru(phen)2(MPyTPP)Cl]Cl ( 2 ) (bpy=2,2-bipyridine; phen=1,10-phenanthroline; MPyTPP=5-monopyridyl-10,15,20–triphenylporphyrin) have been synthesized and characterized by elementary analysis, e.s.–m.s., cyclic voltammetry and u.v.–vis. spectroscopy. The DNA-binding properties of these complexes were investigated by electronic spectra, c.d. spectra and viscosity experiments. The results suggested that both complexes (1) and (2) bind to DNA in an outside binding mode. At the same time, theoretical calculations applying the ab initio and the density functional theory (DFT) methods were also performed, and the results showed that there is no good planarity on the main ligand MPyTPP of these complexes, and there are rather great distortion angles (dihedral angles ca. 72°) between the porphrin ring and each of the 10-, 15-, 20-phenyl groups. This may be the reason why the complexes bind to DNA in an outside mode, instead of an intercalative mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号