首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semi-empirical (AM1-SCI) calculations have been performed on 2-(2′-hydroxyphenyl)oxazole (HPO), 2-(2′-hydroxyphenyl)imidazole (HPI) and 2-(2′-hydroxyphenyl)thiazole (HPT) to rationalise the photophysical behaviour of the compounds exhibiting intramolecular rotation as well as excited state intramolecular proton transfer (ESIPT). The calculations reveal that there is a gradual variation in the properties from HPO to HPT through HPI so far as the existence of the rotational isomers in the ground state is concerned. While HPO gives rise to two stable rotamers (I and II) in all the common solvents, there is only one stable species for HPT in the S0 state. For HPI, rotamer II is possible only in the isolated state and/or in solvents of low polarity, but in high polar solvents it gives rise to the normal form (I) only. For all the molecules in the series, however, intramolecular proton transfer (IPT) takes place in the lowest excited singlet (S1) and the triplet (T1) states. Combination of the rotamerism and ESIPT gives rise to multiple fluorescence bands for the fluorophores. Theoretical assignments have been made for the excitation, fluorescence and phosphorescence bands. Simulated potential energy curves (PEC) in different electronic states reveal that the IPT process is feasible in either of the S1 and T1 states but not in the ground state. The ESIPT reaction has been found to be favoured both thermodynamically and kinetically in these electronic states compared to the ground state. However, quantum mechanical tunnelling has been proposed for the prototropic reaction to proceed in the excited states.  相似文献   

2.
Several (azido)iridium(III) complexes having a pentamethylcyclopentadienyl (Cp∗) group, [Cp∗Ir(N3)2(Ph2Ppy-κP)] (1: Ph2Ppy = 2-diphenylphosphinopyridine), [Cp∗Ir(N3)(Ph2Ppy-κP,κN)]CF3SO3 (2), [Cp∗Ir(N3)(dmpm)]PF6 (3: dmpm = bis(dimethylphosphino)methane), [Cp∗Ir(N3)(Ph2Pqn)]PF6··CH3OH (4··CH3OH: Ph2Pqn = 8-diphenylphosphinoquinoline), and [Cp∗Ir(N3)(pybim)] (5: Hpybim = 2-(2-pyridyl)benzimidazole) have been prepared and their crystal structures have been analyzed by X-ray diffraction. In complex 1, the Ph2Ppy ligand is only coordinated via the P atom (-κP), while in 2 it acts as a bidentate ligand through the P and N atoms (-κP,κN) to form a four-membered chelate ring. Comparing the structural parameters of the chelate ring in 2 with those of a similar five-membered chelate ring formed by Ph2Pqn in 4, it became apparent that the angular distortion in the Ph2Ppy-κP,κN ring was remarkable, although the Ir–P and Ir–N bonds in the Ph2Ppy-κP,κN ring were not elongated very much from the corresponding bonds in the Ph2Pqn-κP,κN ring. In the pybim complex 5, the five-membered chelate ring was coplanar with the pyridine and benzimidazolyl rings. With the related (azido)iridium(III) complexes analyzed previously, comparison of the structural parameters of the Ir–N3 moiety in [Cp∗IrIII(N3)(L–L′)]+/0 complexes reveals an anomalous feature of the 2,2′-bipyridyl (bpy) complex, [Cp∗Ir(N3)(bpy)]PF6.  相似文献   

3.
Reaction of 1-(2′-pyridylazo)-2-naphthol (Hpan) with [Ru(dmso)4Cl2] (dmso = dimethylsulfoxide), [Ru(trpy)Cl3] (trpy = 2,2′,2″-terpyridine), [Ru(bpy)Cl3] (bpy = 2,2′-bipyridine) and [Ru(PPh3)3Cl2] in refluxing ethanol in the presence of a base (NEt3) affords, respectively, the [Ru(pan)2], [Ru(trpy)(pan)]+ (isolated as perchlorate salt), [Ru(bpy)(pan)Cl] and [Ru(PPh3)2(pan)Cl] complexes. Structures of these four complexes have been determined by X-ray crystallography. In each of these complexes, the pan ligand is coordinated to the metal center as a monoanionic tridentate N,N,O-donor. Reaction of the [Ru(bpy)(pan)Cl] complex with pyridine (py) and 4-picoline (pic) in the presence of silver ion has yielded the [Ru(bpy)(pan)(py)]+ and [Ru(bpy)(pan)(pic)]+ complexes (isolated as perchlorate salts), respectively. All the complexes are diamagnetic (low-spin d6, S = 0) and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on all the complexes shows a Ru(II)–Ru(III) oxidation on the positive side of SCE. Except in the [Ru(pan)2] complex, a second oxidative response has been observed in the other five complexes. Reductions of the coordinated ligands have also been observed on the negative side of SCE. The [Ru(trpy)(pan)]ClO4, [Ru(bpy)(pan)(py)]ClO4 and [Ru(bpy)(pan)(pic)]ClO4 complexes have been observed to bind to DNA, but they have not been able to cleave super-coiled DNA on UV irradiation.  相似文献   

4.
[RuH(CO)(SCN)(PPh3)3] and [RuH(CO){SCN}(PPh3)2(L)]{SCN} complexes (where L = benzimidazole, 2-(2-pyridyl)benzimidazole and 2,2′-bis(4,5-dimethylimidazolyl)) have been prepared and studied by IR, NMR, UV–Vis spectroscopy and X-ray crystallography. Electronic structures and bonding of the obtained complexes were defined on the basis of DFT method. Values of the ligand field parameter 10Dq and Racah’s parameters were estimated for the studied compounds, and the luminescence properties were determined.  相似文献   

5.
The preparation of 4′-(3,5-dimethylpyrazol-1-yl)-2,2′:6′,2″-terpyridine (2) under acidic conditions results in the formation of the salts [H22][MeOSO3]2 and [H22][EtOSO3]2, treatment of which with base leads to neutral 2. The structure of [H22][EtOSO3]2 · H2O has been established by single crystal X-ray diffraction. The complexes [Fe(2)2][PF6]2 and [Ru(2)2][PF6]2 have been prepared and characterized, and the single crystal structure determination of [Ru(2)2][PF6]2 is reported; [Fe(2)2][PF6]2 is isostructural with [Ru(2)2][PF6]2. Treatment of [Fe(2)2]2+ with PdCl2 produces [Pd(2)Cl]+, isolated and structurally characterized as the hexafluoridophosphate salt, illustrating that metal exchange within the tpy-binding domain occurs in preference to palladium(II) coordination by the N-donor atom of the pendant 3,5-dimethylpyrazol-1-yl unit in 2. [Pd(2)Cl]2+ can also be prepared from PdCl2 and [H22][MeOSO3]2 in refluxing methanol.  相似文献   

6.
The [(C6H6)RuCl(HPB)] and [(C6H6)RuCl2(C5H4NCOOH)] complexes have been prepared and studied by IR, UV-Vis spectroscopy and X-ray crystallography. The complexes was prepared in reaction of [(C6H6)RuCl2]2 with 2-(2′-hydroxyphenyl)-benzoxazole or 4-picolinic acid in methanol. The electronic spectra of the obtained compounds have been calculated using the TDDFT method. The luminescence property of the half sandwich complex [(C6H6)RuCl(HPB)] was studied by the DFT method and the mechanism was suggested.  相似文献   

7.
The ligating properties 1-(2′-pyridylazo)-2-naphthol (HPAN) toward Rh(III) have been examined. The reaction of RhCl3·3H2O with HPAN in presence of excess PPh3 afforded trans-[Rh(PAN)Cl(PPh3)2]PF6 (3PF6). Intermediate cis-[Rh(PAN)Cl2(PPh3)] (4) has also been isolated. Solid state structures were authenticated by X-ray analyses revealing that monoanionic PAN is coordinated to rhodium in meridional fashion. Both the compounds were spectroscopically characterized in both solution and solid states, which include IR, NMR (1H and 31P), and optical spectra. The diamagnetic complexes show multiple CT transitions in the visible region. Low-energy transitions (λ ≈ 550–650 nm) occurred in the absorption spectra are predominantly ligand centered in nature. The rhodium(III)–PAN compounds are red emissive (λem ≈ 650 nm) at room temperature and the nature of the emission level is probably an ILCT level. Complexes are electro-active in acetonitrile and display irreversible oxidative and reductive waves and these responses are ascribed to be PAN ligand centered in character.  相似文献   

8.
9.
Reaction of 2-(2′,6′-diethylphenylazo)-4-methylphenol (L2) with [Ir(PPh3)3Cl] afforded two organoiridium complexes 3 and 4 via C-H bond activation of an ethyl group in the arylazo fragment of the L2 ligand. In both the complexes the azo ligand binds to iridium as a dianionic tridentate C,N,O-donor. Two triphenylphosphines and a hydride (in the case of complex 3) or chloride (in the case of complex 4) are also coordinated to the metal center. A similar reaction of [Ir(PPh3)3Cl] with 2-(2′,6′-diisopropylphenylazo)-4-methylphenol (L3) yielded another organoiridium complex 5, where migration of one iso-propyl group from its original location (say, the 2′ position) to the corresponding third position (say, the 4′ position) took place through C-C bond activation. In this complex the modified azo ligand binds to iridium as a dianionic tridentate C,N,O-donor. Two triphenylphosphines and a hydride are also coordinated to the metal center. The structures of complexes 3 and 4 have been optimized through DFT calculations. The structure of complex 5 has been determined by X-ray crystallography. All the complexes show characteristic 1H NMR signals and intense transitions in the visible region. Cyclic voltammetry on all the complexes shows an oxidation within 0.66-1.10 V vs SCE, followed by a second oxidation within 1.15-1.33 V vs SCE and a reduction within −0.96 to −1.07 V vs SCE.  相似文献   

10.
The reaction of RhCl3·3H2O with the ligand L = 2-(2′-pyridyl)quinoxaline (pqo) in a 1:2 molar ratio formed the mononuclear complex cis-[RhL2Cl2]Cl (1), which has been characterized by elemental analysis, FT-IR, FT-Raman, 1H, 13C NMR, electronic absorption spectroscopy and by electrospray mass spectrometry. The molecular structure of 1 (needle like and prismatic polymorphs) in the crystal has been elucidated by single-crystal X-ray diffraction, revealing a bidentate behavior of L, while the geometry around the Rh(III) atom is that of a distorted octahedron.. Preliminary biological tests revealed that this compound inhibited PAF-induced rabbit platelet aggregation.  相似文献   

11.
Reactions of [(η6-arene)RuCl2]2 (1) (η6-arene=p-cymene (1a), 1,3,5-Me3C6H3 (1b), 1,2,3-Me3C6H3 (1c) 1,2,3,4-Me4C6H2(1d), 1,2,3,5-Me4C6H2 (1e) and C6Me6 (1f)) or [Cp*MCl2]2 (M=Rh (2), Ir (3); Cp*=C5Me5) with 4-isocyanoazobenzene (RNC) and 4,4′-diisocyanoazobenzene (CN–R–NC) gave mononuclear and dinuclear complexes, [(η6-arene)Ru(CNC6H4N=NC6H5)Cl2] (4a–f), [Cp*M(CNC6H4N=NC6H5)Cl2] (5: M=Rh; 6: M=Ir), [{(η6-arene)RuCl2}2{μ-CNC6H4N=NC6H4NC}] (8a–f) and [(Cp*MCl2)2(μ-CNC6H4N=NC6H4NC)}] (9: M=Rh; 10: M=Ir), respectively. It was confirmed by X-ray analyses of 4a and 5 that these complexes have trans-forms for the ---N=N--- moieties. Reaction of [Cp*Rh(dppf)(MeCN)](PF6)2 (dppf=1,1′-bis (diphenylphosphino)ferrocene) with 4-isocyanoazobenzene gave [Cp*Rh(dppf)(CNC6H4N=NC6H5)](PF6)2 (7), confirmed by X-ray analysis. Complex 8b reacted with Ag(CF3SO3), giving a rectangular tetranuclear complex 11b, [{(η6-1,3,5-Me3C6H3)Ru(μ-Cl}4(μ-CNC6H4N=NC6H4NC)2](CF3SO3)4 bridged by four Cl atoms and two μ-diisocyanoazobenzene ligands. Photochemical reactions of the ruthenium complexes (4 and 8) led to the decomposition of the complexes, whereas those of 5, 7, 9 and 10 underwent a trans-to-cis isomerization. In the electrochemical reactions the reductive waves about −1.50 V for 4 and −1.44 V for 8 are due to the reduction of azo group, [---N=N---]→[---N=N---]2−. The irreversible oxidative waves at ca. 0.87 V for the 4 and at ca. 0.85 V for 8 came from the oxidation of Ru(II)→Ru(III).  相似文献   

12.
Treatment of [Ir(ppy)2(μ-Cl)]2 and [Ir(ppy)2(dtbpy)][OTf] (ppy = 2-(2′-pyridyl)phenyl; dtbpy = 4,4′-di-tert-butyl-2,2′-bipyridine; OTf = triflate) with pyridinium tribromide in the presence of Fe powder led to isolation of [Ir(4-Br-ppy)(μ-Br)]2 (1) and [Ir(4-Br-ppy)2(dtbpy)][OTf] (2), respectively. Pd-catalyzed cross-coupling of 2 with RB(OH)2 afforded [Ir(4-R-ppy)2(dtbpy)][OTf] (R = 4′-FC6H4 (3)), 4′-PhC6H4 (4), 2′-thienyl (5), 4′-C6H4CH2OH (6). Treatment of 4 with B2(pin)2 (pin = pinacolate) afforded [Ir{4-(pin)B-ppy}2(dtbpy)][OTf] (7). The alkynyl complexes [Ir(4-PhCC-ppy)2(dtbpy)][OTf] (8) and [Ir{4-Me2(OH)CC-ppy}(4-Br-ppy)(dtbpy)][OTf] (9) were prepared by cross-coupling of 2 with PhCCSnMe3 and Me2C(OH)CCH, respectively. Ethynylation of [Ir(fppy)2(dtbpy)][OTf] (fppy = 5-formyl-2-(2′-pyridyl)phenyl) with Ohira’s reagent MeCOC(N2)P(O)(OEt)2 afforded [Ir{5-HCC-ppy}2(dtbpy)][OTf] (10). The solid-state structures of 2, 5, 7, and 10 have been determined.  相似文献   

13.
Four copper(II) supramolecular complexes, {[Cu(Hpb)(mal)]·H2O} n (1), (Hpb?=?2-(2-pyridyl)-benzimidazole, mal?=?maleate), [Cu4(pb)4(cro)4(MeOH)2]·2MeOH (2) (cro?=?crotonate), [Cu2(pb)(Hpb)(mac)3(MeOH)] (3) (mac?=?α-methacrylate) and [Cu(Hpb)(acr)2(H2O)] (4) (acr?=?acrylate), based on carboxylate copper(II)-aromatic ligand systems which are assembled by combination of metal coordination, hydrogen-bond and π–π interactions, have been rationally designed and synthesized. Complex 1 forms a 3D supramolecular network with open channels by extending 2D undulating sheets constructed from 1D helical chains. Complex 2 generates a 2D grid-like sheet via unusual finite-chain tetranuclear molecules, with four copper atoms arranged in a line; the unit does not extend further due to the capping effect of the terminal methanol. Complexes 3 and 4 present a 1D sinusoidal structure and a 3D columnar network with 1D ladder-shaped double chains, respectively. Interestingly, coligand Hpb, deprotonated or/and neutral in different supramolecular complexes, provides hydrogen bonding and π–π stacking interactions. In complexes 2, 3 and 4, carboxylate anions show various bridging modes, which are reflected in their magnetic properties. Weak ferromagnetic coupling (syn-anti µ-OCO) exists in 1, antiferromagnetic (syn-syn µ-OCO) and weak ferromagnetic coupling (µ-O of the??COO group) in 2 and antiferromagnetic coupling (syn-syn µ-OCO) in 3.  相似文献   

14.
Spectral-luminescent properties of the newly synthesized 2-(3-coumarinyl)-5-(2′-(R-amino)-phenyl)-1,3,4-oxadiazoles has been investigated in solvents of various polarity and hydrogen-bonding ability. It has been found that for all the studied compounds no excited state intramolecular proton transfer occurs despite the presence of coumarinyl fragment - electron acceptor effect of the coumarinyl fragment is not sufficient to increase the excited state acidity of the amino group. It has been found that the absorption spectra of the studied compounds shift to higher energy with increase in solvent polarity, whereas corresponding fluorescence spectra shift to lower energy with solvent polarity increase. It has been suggested that long-wavelength shifts of the fluorescence spectra of the studied compounds with increase in solvent polarity is caused by the solvent relaxation. The observed solvent relaxation effect allow us to propose some of the studied compounds as potential probes to monitor changes in solvent relaxation in low-polar media and as potential probes for rigidochromic effect.  相似文献   

15.
Treatment of [RuCl26-C6H6)]x with bidentate phosphine ligand BDNA [1,8-bis(diphenylphosphinomethyl)naphthalene] in methanol at room temperature gave η6-benzene-ruthenium complexes Ru2Cl46-C6H6)2(μ-BDNA) (1). Complex 1 further reacted with AgBF4 to form complex [Ru2Cl2(μ-Cl)(η6-C6H6)2(μ-BDNA)](BF4) (2). [RuCl26-C6H6)]x reacted with BDNA in refluxing methanol and then the reaction solution was treated with AgBF4 to generate complex [Ru2Cl26-C6H6)2(μ-BDNA)2](BF4)2 (3). Their compositions and structures had been determined by elemental analyses, NMR spectra and single crystal X-ray diffractions. X-ray diffraction showed that complex 1 belonged to monoclinic crystal system, P21/c space group with Z = 4, a = 12.810 Å, b = 21.507 Å, c = 18.471 Å, β = 107.95°; complex 2 belonged monoclinic crystal system, P21/n space group with Z = 4, a = 14.498 Å, b = 15.644 Å, c = 20.788 Å, β = 103.404°, and complex 3 belonged to monoclinic crystal system, P21/n space group with Z = 2, a = 13.732 Å, b = 14.351 Å, c = 19.733 Å, β = 94.82°.  相似文献   

16.
DFT methods have been applied for the calculation of several ground-state properties of neutral and charged ruthenium(II) and osmium(II) tin trihydride complexes bearing N-donor, P-donor and C-donor ancillary ligands in their coordination sphere. Complexes of the type M(SnH3)(Tp)(PPh3)P(OMe)3, M(SnH3)(Cp)(PPh3)P(OMe)3 and [M(SnH3)(Bpy)2P(OMe)3]+ (M = Ru, Os; Tp = tris(pyrazol-1-yl)borate; Cp = cyclopentadienyl ion; Bpy = 2,2′-bipyridine) have been studied using the EDF2 and B3PW91 functionals. The same calculations have been carried out also on the corresponding [M]-CH3 and [M]-H compounds, to compare the electronic features of the different reactive ligands coordinated to the same metal fragments. Charge distribution analyses were used to give insight into the roles of the transition metal centres and the ancillary ligands on the properties of the coordinated SnH3 group. The molecular orbitals of the methyl- and trihydrostannyl-complexes were compared to understand the nature of the [M]-SnH3 bond and the electronic transitions of these species.  相似文献   

17.
用NaNO2/FeSO4·7H2O体系替代TEMPO在有机相中合成分子量可控的聚苯乙烯大分子引发剂,引发苯乙烯聚合及酯类单体[如甲基丙烯酸甲酯(MMA)、丙烯酸甲酯(MA)和丙烯酸乙酯(EA)等]聚合,得到两嵌段共聚物.其多分散性指数小于1.5,体现了可控聚合的特征.用大分子引发剂引发苯乙烯进行活性链增长,单体的转化率较高.嵌段共聚物的实测分子量与理论分子量相近,结构经1HNMR和GPC表征.NaNO2/FeSO4·7H2O体系在纯有机相中的应用降低了活性聚合的成本,有利于工业化应用.  相似文献   

18.
The [ReOCl2(hmpbta)(AsPh3)] · MeCN, [ReOBr2(hmpbta)(AsPh3)] · MeCN, [ReOCl2(hmpbta)(PPh3)] · MeCN, [ReOBr2(hmpbta)(PPh3)] · MeCN, and [ReBr2(hmpbta)(PPh3)] · MeCN complexes have been prepared in the reactions of [ReOX3(EPh3)2] (X = Cl, Br; E = P, As) with 2-(2’-hydoxy-5′-methylphenyl)benzotriazole in molar ratio 1:1. All the compounds were structurally and spectroscopically characterized. The electronic structure of [ReOCl2(hmpbta)(AsPh3)] has been calculated with the density functional theory (DFT) method. The TDDFT/PCM calculations have been employed to produce a hundred of singlet excited-states starting from the ground-state geometry optimized in the gas phase, and the UV–Vis spectrum of [ReOCl2(hmpbta)(AsPh3)] has been discussed on this basis. The paper reports also X-ray structure and DFT calculations for the disubstituted [ReOCl(hmpbta)2] chelate.  相似文献   

19.
Reaction between 9,9′-spirobifluorene and [CpM]+ (where M = Fe and Ru) equivalents gives the complexes [CpRu(η6-SBF)][PF6] (1), [(CpRu)266-SBF)][PF6]2 (2) and [(CpFe)266-SBF)][PF6]2 (3), respectively. Single crystal X-ray structures of 1 and 3 show that the metal atoms exhibit distorted η6-coordination to SBF phenyl moieties primarily as a consequence of steric interactions between Cp and SBF. The structure of 3 contains each of the possible C2 enantiomers whereas NMR spectroscopy shows signals consistent with a 1:1 mixture of C2 and C1 stereoisomers for both 2 and 3. In conjunction with electrochemical data the observations are consistent with SBF acting as a molecule containing two independent biphenyl moieties.  相似文献   

20.
Pyrazole IrHCl2(HRpz)P2 [P = PPh3, PiPr3; R = H, 3-Me], bis(pyrazole) [IrHCl(HRpz)2(PPh3)2]BPh4 and imidazole IrHCl2(HIm)(PPh3)2 derivatives were prepared by allowing the IrHCl2(PPh3)3 complex to react with the appropriate azole in refluxing 1,2-dichloroethane. Nitrile IrHCl2(CH3CN)(PPh3)2 and 2,2′-bipyridine (bpy) [IrHCl(bpy)(PPh3)2]BPh4 derivatives were also prepared using IrHCl2(PPh3)3 as a precursor. The complexes were characterised spectroscopically (IR and NMR) and a geometry in solution was also established. Protonation with Brønsted acid of pyrazole IrHCl2(Hpz)(PPh3)2 and imidazole IrHCl2(HIm)(PPh3)2 complexes proceeded with the loss of the azole ligands and the formation of the unstable IrHCl2(PPh3)2 derivative. Vinyl IrCl2{CHC(H)R1}(HRpz)P2 and IrCl2{CHC(H)R1}(HIm)P2 (R1 = Ph, p-tolyl, COOCH3; P = PPh3, PiPr3) complexes were prepared by allowing hydride-pyrazole IrHCl2(HRpz)P2 and hydride-imidazole IrHCl2(HIm)P2 to react with an excess of terminal alkyne in 1,2-dichloroethane. The complexes were characterised spectroscopically and by the X-ray crystal structure determination of the IrCl2{CHC(H)Ph}(Hpz)(PPh3)2 derivative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号