首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The interaction of diethyl (pyridyn-2-ylmethyl)phosphonate (2-pmpe) with Cu(NO3)2 · 6H2O leads to a partial hydrolysis of the starting ligand and formation of the compound of the formula Cu2(2-mpmpe)2(H2O)2(NO3)2, where 2-mpmpe = monoethyl (pyridyn-2-ylmethyl)phosphonate. The crystal and molecular structure of a copper(II) compound was determined by single X-ray diffraction method. Its structure consists of five-coordinated in distorted square planar geometry (CuNO4 chromophore) copper(II) ions doubly bridged by OPO from phosphonate. The Cu?Cu distance is 4.69 Å. The crystal packing is determined by the interdinuclear hydrogen bond system, which leads to a three-dimensional (3D) H-bonds network. The compound was characterized by infrared, ligand field, EPR spectroscopy, and magnetic studies. The magnetic properties of the title compound investigated over the 1.8–300 K, revealed the occurrence of a weak ferromagnetic coupling through phosphonate bridge (J = 1.86 cm−1) and interdimer superexchange coupling through H-bond network (zJ′ = −0.17 cm−1). Spectroscopic and magnetic properties are presented in the light of crystal structure.  相似文献   

2.
EPR simulation method together with pH-potentiometry combined with UV-Vis spectrophotometry were used for the study of the ternary system 4-fuorosalicylic acid (HA)-N,N-diethylnicotinamide (B)-copper(II) in aqueous solution. The N,N-diethylnicotinamide ligand is a weak donor, its mixed-ligand complexes with 4-fluorosalicylate anions are more favoured. The number of coordinated N,N-diethylnicotinamide molecules increases with decreasing temperature: up to four ones were detected in the coordination sphere of copper(II) in frozen solutions. The formation of [CuH−1AB2] and [CuH−1A] was detected by all methods at neutral pH. At lower pH values, [CuA2B2] and [CuB] become dominant, and this fact is in good agreement with [CuA2B2(H2O)2] crystals obtained from similar solutions. The structural unit of the [CuA2B2(H2O)2] complex consists of a copper(II) ion, which is monodentately coordinated by a pair of 4-fluorosalicylate anions and by a pair of N,N-diethylnicotinamide in trans positions in the basal plane, and by two water molecules in the axial positions of a tetragonal bipyramid.  相似文献   

3.
A new complex of N-thiophosphorylthiourea PhNHC(S)NHP(S)(OiPr)2 (HL) of formula [(Cu3L3)2] has been synthesized and characterized by single crystal X-ray diffraction, FT-IR, 1H, 31P NMR in solution and by 31P CPMAS NMR spectroscopy in the solid state. A comparison of the structure and the spectral parameters of [(Cu3L3)2] with those of the mononuclear analogue [Cu(PPh3)2L] was performed. In the solid state the aggregate [(Cu3L3)2] represents the first example of a spontaneous “side-by-side” association of two neutral cyclic [Cu3L3] moieties using two Cu-S-Cu bridges formed by the sulfur atoms of the PS-groups. The values of the 1J(31P-63,65Cu) and 2J(31P-31P) coupling constants of the [Cu(PPh3)2]+ moiety in the solid state spectra are reported.  相似文献   

4.
A dinuclear copper(Ⅱ) complex[Cu2(TATP)2(L-Leu)2(CIO4)2]2·2H2Owas synthesized and characterized, where, TATP=1,4,8,9-tetraazatriphenylene, and L-Leu=L-leucinate. The complex was crystallized in the triclinic space group P1, with two independent molecules in a unit cell. Two Cu(Ⅱ) ions in each complex [Cu2(TATP)2(L-Leu)2(CIO4)2] molecule were found to be in different coordination geometries, i.e., Cu2 or Cu4 of a distorted square-pyramidal geometry coordinated with two nitrogens of TATP, the amino nitrogen and one carboxylate oxygen of L-Leu and one oxygen of perchlorate, and Cul or Cu3 with an octahedral geometry coordinated with the above stated similar coordinated atoms, and another carboxylate oxygen of L-Leu coordinating to Cu2 or Cu4. The complex can interact with CT-DNA by an intercalative mode and cleave pBR322 DNA in the presence of ascorbate.  相似文献   

5.
6.
The new compound Cu3(TeO3)2Br2 crystallizes in the monoclinic spacegroup C2/m. The unit cell parameters are a=9.3186(18)Å, b=6.2781(9)Å, c=8.1999(16)Å, β=107.39(2)°, Z=2. The structure is solved from single crystal data, R1=0.021. The new compound shows a layered structure where only weak van der Waals interactions connect the layers. There are two crystallographically different Cu(II) atoms; one having a square planar [CuO4] coordination and one showing an unusual [CuO4Br] trigonal bi-pyramidal coordination, the Br-ion is located in the equatorial plane. The Te(IV) atom has a tetrahedral [TeO3E] coordination where E is the 5s2 lone-pair. Within the layers the Cu-polyhedra are connected by corner- and edge sharing to form chains. The chains are separated by the Te atoms. The magnetic properties are dominated by long range magnetic ordering at . Evidence for a coexistence of ferromagnetic and antiferromagnetic interactions exists.  相似文献   

7.
A novel malonate-bridged copper (II) compound of formula {[Cu4(4,4′-bpy)8(mal)2(H2O)4](ClO4)2(H2O)4(CH3OH)2}n (4,4′-bpy = 4,4′-bipyridine; mal = malonate dianion) has been prepared and structurally characterized by X-ray crystallography. This compound exhibits a novel three-dimensional network being composed of Cu-4,4′-bipyridine layers which are pillared by malonate bridge ligands. The copper(II) ions has two different coordination environment.  相似文献   

8.
Reaction of O,O’-diisopropylthiophosphoric acid isothiocyanate (iPrO)2P(S)NCS with diethyl 4-aminobenzylphosphonate (EtO)2P(O)CH2C6H4-4-NH2 leads to the new N-thiophosphorylated thiourea (EtO)2P(O)CH2C6H4-4-[NHC(S)NHP(S)(OiPr)2] (HL). Reaction of the potassium salt of HL with Zn(II), Cd(II) and Co(II) in aqueous EtOH leads to complexes of formula M(L-S,S’)2 (ML2). Heteroligand copper(I) complex of HL and triphenylphosphine was prepared by the reaction of the potassium salt KL and Cu(PPh3)3I. Copper in complex Cu(PPh3)L is bound by one PPh3 and one SCNPS fragment of the chelating ligand. Compounds obtained were investigated by IR, UV–Vis, 1H and 31P{1H} NMR spectroscopy, and microanalysis. The structures of HL and Cu(PPh3)L were investigated by single crystal X-ray diffraction analysis.  相似文献   

9.
The preparation, crystal structure and magnetic properties of a new oxalate-containing copper(II) chain of formula {[(CH3)4N]2[Cu(C2O4)2] · H2O}n (1) [(CH3)4N+ = tetramethylammonium cation] are reported. The structure of 1 consists of anionic oxalate-bridged copper(II) chains, tetramethylammoniun cations and crystallization water molecules. Each copper(II) ion in 1 is surrounded by three oxalate ligands, one being bidentate and the other two exhibiting bis-bidenate coordination modes. Although all the tris-chelated copper(II) units from a given chain exhibit the same helicity, adjacent chains have opposite helicities and then an achiral structure results. Variable-temperature magnetic susceptibility measurements of 1 show the occurrence of a weak ferromagnetic interaction through the oxalate bridge [J = +1.14(1) cm−1, the Hamiltonian being defined as H = –JnmSi · Sj]. This value is analyzed and discussed in the light of available magneto-structural data for oxalate-bridged copper(II) complexes with the same out-of-plane exchange pathway.  相似文献   

10.
The interaction of the diethyl(quinolin-2-ylmethyl)phosphonate (2-qmpe) ligand with CoCl2 · 2H2O unexpectedly leads to the formation of a compound with the formula [Co(2-qca)2(EtOH)2] (2-qca = quinoline-2-carboxylate). This compound is a product of the oxidative cleavage of the C–P bond in 2-qmpe and the formation of the 2-qca ligand. The title compound was characterized by infrared, ligand field, EPR spectroscopy and low temperature magnetic (1.8–300 K) studies. Particularly, the crystal and molecular structures were determined by the X-ray diffraction. The CoN2O4 chromophore shows an elongated octahedron geometry, resulting from the two didentate N,O-bonded chelate ligands and two ethanol molecules – quinolil nitrogen atoms are located in axial positions and oxygen atoms are positioned in the basal plane. The crystal packing is due to hydrogen bonds and π–π stacking interactions, which give rise to a three-dimensional (3D) polymeric network. The magnetic properties reflect the molecular character of the compound, with a very weak magnetic exchange interaction. The moments are enhanced due to an important orbital contribution via spin–orbit coupling.  相似文献   

11.
A novel copper organodiphosphonate complex containing a second ligand 4,4′-bipyridine (4,4′-bpy) based on 1-aminoethylidenediphosphonic acid (H4aedp), Cu4(aedp)2(4,4′-bpy)(H2O)4 (1), has been synthesized under hydrothermal conditions. Complex 1 adopts a three-dimensional framework structure assembled from {Cu4(aedp)2(H2O)4} layers and 4,4′-bpy bridges. Each {Cu4(aedp)2(H2O)4} unit consists of three crystallographically distinct Cu atoms. The Cu(1) atom has a distorted square pyramidal geometry, whereas the Cu(2) and Cu(3) atoms have a distorted elongated tetragonal octahedral geometry. The magnetic studies indicate that complex 1 show typical antiferromagnetic behaviors at low temperature, which is attributed to the superexchange couplings between Cu(II) centers through μ-O bridge in the phosphonate layers. Crystal data for 1: triclinic, space group , a=8.0931(16), b=13.567(3), c=6.2185(12)Å, α=90.55(3), β=96.97(3), γ=78.50(3)°, V=664.1(2)Å3, Z=2.  相似文献   

12.
The C,N-(trimethylsilyliminodiphenylphosphoranyl)silylmethylmetal complexes [Fe(L)2] (3), [Co(L)2] (4), [ZrCl3(L)]·0.83CH2Cl2 (5), [Fe(L)3] (6), [Fe(L′)2] (7) and [Co(L′)2] (8) have been prepared from the lithium compound Li[CH(SiMe2R)P(Ph)2NSiMe3] [1a, (R = Me) {≡ Li(L)}; 1b, (R = NEt2) {≡ Li(L′)}] and the appropriate metal chloride (or for 7, FeCl3). From Li[N(SiMe3)C(Ph)C(H)P(Ph)2NSiMe3] [≡ Li(L″)] (2), prepared in situ from Li(L) (1a) and PhCN, and CoCl2 there was obtained bis(3-trimethylsilylimino- diphenylphosphoranyl-2-phenyl-N-trimethylsilyl-1-azaallyl-N,N)cobalt(II) (9). These crystalline complexes 3-9 were characterised by their mass spectra, microanalyses, high spin magnetic moments (not 5) and for 5 multinuclear NMR solution spectra. The X-ray structure of 3 showed it to be a pseudotetrahedral bis(chelate), the iron atom at the spiro junction.  相似文献   

13.
The single crystal of a supramolecule, {Eu2(p-BDC)3(Phen)2(H2O)2}n (p-BDC=1,4-benzenedicarboxylate), with characteristic luminescence of Eu3+ was obtained by means of soft chemistry. The crystal structure determination reveals that each Eu3+ ion is coordinated by five oxygen atoms of p-BDC anions, one oxygen atom from water molecule, and two nitrogen atoms of Phen, respectively, resulting in an eight-coordinated Eu3+ center and a distorted square antiprism coordination polyhedron. Four bridges, two carboxylates of μ4-p-BDC and two of μ3-p-BDC, connect two Eu atoms into a binuclear unit. Moreover, the μ3-p-BDC integrates the binuclear building blocks at the direction of b axis and the μ4-p-BDC polymerizes the structure roughly along the direction of the sum vector of axis b and c, respectively, forming two-dimensional layers. Hydrogen bonds between layers make the structure a three-dimensional network. The luminescence spectra measured under 77 K demonstrate the antenna effect of Phen and the 5D15D0 energy transfer path within Eu3+ ion. Both luminescence spectra and crystal structure lead to the conclusion that the local symmetry around the Eu3+ ion is C1 and that more than one Eu3+ ion sites having slight environmental difference are present.  相似文献   

14.
Two structurally different complexes, [Cu2(2-NO2Bz)4(denia)1]n (1) and [Cu(2-NO2Bz)2(denia)2(H2O)2] (2), were prepared from the same reaction (where 2-NO2Bz = 2-nitrobenzoate, denia = N,N-diethylnicotinamide) and they are reported together with [Cu2(2-NO2Bz)4(DMF)2] (3) (DMF = N,N-dimethylformamide). The compounds under study were characterized by elemental analysis, electronic, IR and EPR spectra, magnetic measurements over the temperature range of 1.8–300 K and X-ray analysis. The molecular structure of (1) is polymeric, (2) is monomeric and (3) is dimeric. In the polymeric chain of (1), the denia molecules serve as bridges between dimeric Cu2(2-NO2bz)4 units. Each Cu(II) atom has a square-pyramidal arrangement with different chromophores, Cu1O4O′ and Cu2O4N. The Cu–Cu distances are 2.699(1) Å in the dimeric unit and 7.980(3) Å between the dimeric units. In (2) the Cu(II) atom has a tetragonal-bipyramidal environment CuO2N2O′2. In (3) two Cu(II) atoms are bridged by four carboxylate groups of four 2-NO2bz anions in a synsyn arrangement which create a square base about each Cu(II) atom and an apical position is occupied by the O atom of a DMF molecule (CuO4O′). The Cu–Cu distance of 2.633(1) Å is somewhat shorter than in (1). Spectral and magnetic data of the complexes are discussed with their structures.  相似文献   

15.
Two novel Pb(II) complexes, {[Pb(hca)2·DMF]·DMF} and [Pb(hca)2(phen)·DMF]2 (hca=trans-4-hydroxycinnamic group), were obtained by solid-phase reactions of PbAc2 and Hhca and PbAc2, Hhca, and phen, respectively, and characterized by spectroscopy. X-ray crystallography analysis reveals that complex 1, {[Pb(hca)2·DMF]·DMF}, adopts a 2-dimensional structure through the weak interactions of Pb and O atoms and that complex 2, [Pb(hca)2(phen)·DMF]2, shows a discrete dimeric structure, in which hydrogen bonds link the dimers into a 2D network. Both complexes 1 and 2 show visible fluorescence and the intensity is stronger than that of the ligand. More interestingly, the intensity of emission was increased at least fivefolds when the pH of the solution was adjusted to alkalinity. This can be attributed to that the deprotonization of phenolic group enhancing the conjugation of the ligand hca. These results indicate that this method may be an effective way to increase the emission intensity of similar complexes.  相似文献   

16.
Complexes of ZnII salts with 4,4′-bipyridine-N,N′-dioxide (bpdo) have been prepared by solvathermal and solvent layering methods. Three complexes were obtained from ZnBr2: 1 is a 2D coordination polymer [Zn2Br4(bpdo)2]n, (2) a discrete trimetallic molecule [Zn3Br6(H2O)2(bpdo)4] and 3 a salt [ZnBr4][Zn(H2O)5(bpdo)]. Complexes 2 and 3 contain ZnII ions in both octahedral and tetrahedral coordination geometry. While in 2, these are covalently linked by bridging bpdo ligands forming zwitterionic trimetallic molecules, in 3 there is complete charge separation into [ZnBr4]2− anions and [Zn(H2O)5(bpdo)]2+ cations. When Zn(NCS)2 is used as starting material, a 1D coordination polymer [Zn(H2O)2 (bpdo)(NCS)2]n is obtained.  相似文献   

17.
[Cu(NBOCTB)](ClO4)2·2DMF的合成、晶体结构和热分解过程研究   总被引:2,自引:0,他引:2  
制备了二(N,N-二甲基甲酰胺)-高氯酸N,N,N'',N''-四[(1''-苄基-2''-苯并咪唑)甲基]-1,2-环己二胺合铜(Ⅱ){[Cu(NBOCTB)](ClO4)2·2DMF}.X射线测定表明其晶体属三斜晶系,空间群P1,晶胞参数α=1.1851(5)nm,b=1.2255(3)nm,c=2.5237(5)nm;α=92.37(2)°,β=98.01(2)°,γ=107.82(3)°,V=3.442(4)nm3,M=1403.93,Z=2,Dx=1.36g/cm3,μ=4.60cm(-1),F(000)=1470.TG-DTG技术研究结果表明,配合物的热分解过程分为以下4个阶段:(19941106-1597-1.jpg)  相似文献   

18.
Nickel and copper complexes containing 1,3,5-benzenetricarboxylic acid, with a combination of selected N-donor ligands and Schiff bases, of the composition Ni3(bimz)6(btc)2 · 12H2O (1), Ni3(btz)9(btc)2 · 12H2O (2), Ni2(L1)(btc) · 7H2O (3), Ni3(L2)2(Hbtc) · 9H2O (4), Ni2(L3)(btc) · 4H2O (5), Cu2(L4)(btc) · 7H2O (6), [Cu3(pmdien)3(btc)](ClO4)3 · 6H2O (7) and [Cu3(mdpta)3(btc)](ClO4)3 · 4H2O (8); H3btc = 1,3,5-benzenetricarboxylic acid, bimz = benzimidazole, btz = 1,2,3-benztriazole, L1 = 2-[(phenylimino)methyl]phenol, L2 = N,N′-bis-(salicylidene)propylenediamine, L3 = 2-{[(2-nitrophenyl)methylene]amino}phenol, L4 = 2-[(4-methoxy-phenylimino)methyl]phenol, pmdien = N,N,N′,N″,N″-pentamethyldiethylenetriamine, mdpta = N,N-bis-(3-aminopropyl)methylamine, have been synthesized. The complexes have been studied by elemental analysis, IR, UV–Vis spectroscopies, magnetochemical and conductivity measurements and selected compounds also by thermal analysis. The crystal and molecular structure of complex 8 was solved. The complex is trinuclear with btc3−-bridge. The coordination polyhedron around each copper atom can be described as a distorted square with a CuON3 chromophore formed by one oxygen atom of carboxylate and three nitrogen atoms of mdpta. The magnetic properties of 8 have been studied in the 1.8–300 K temperature range revealing a very weak antiferromagnetic exchange interaction with J = −0.56 cm−1 for g = 2.13(9). The antimicrobial activities against selected strains of bacteria were evaluated. It was found that only complex 5 is able to inhibit the growth of Staphylococcus strains.  相似文献   

19.
The reaction of lanthanide nitrate with 1,4-di (N,N-diisopropylacetamido)-2,3(1H,4H)-quinoxalinedione (L) yields six novel Ln(III) complexes ([Ln2L2(NO3)6(H2O)2]·H2O) which are characterized by elemental analysis, thermogravimetric analysis (TGA), conductivity measurements, IR, electronic and 1H NMR spectroscopies. A new quinoxalinedione-based ligand is used as antenna ligand to sensitize the emission of lanthanide cations. The lowest triplet state energy level of the ligand in the nitrate complex matches better to the resonance level of Eu(III) and Sm(III) than Tb(III) and Dy(III) ion. The f-f fluorescence is induced in the Eu3+ and Sm3+ complexes by exciting into the π-π* absorptions of the ligand in the UV. Furthermore, the crystal structures of a novel binuclear complex [Nd2L2(NO3)6(H2O)2]·H2O has been determined by single-crystal X-ray diffraction. The binuclear [Nd2L2(NO3)6(H2O)2]·H2O complex units are linked by the intermolecular hydrogen bonds and π-π interactions to form a two-dimensional (2-D) layer supramolecule.  相似文献   

20.
The spectroscopic and magnetic properties, and crystal structure of dark-blue [Cu(2-pca)2]n (1), (2-pca = pyridine-2-carboxylate ion) are described. The copper(II) ions are in strongly tetragonally distorted octahedral environments. They are sequentially bridged by a double out-of-plane carboxylate bridge, resulting in the formation of an infinite chain (1D). The equatorial Cu–O bonds (1.957(3) Å) are significantly shorter than the axial bonds (2.737(4) Å). The crystal structure of the compound is stabilized by interchain hydrogen bonds of the C–H?O type. The intrachain copper–copper separation is 5.178(3) Å, whereas the shortest interchain copper–copper distance is 7.614(6) Å. The magnetic properties, investigated in the temperature range 1.8–300 K, revealed the occurrence of a weak intrachain antiferromagnetic coupling, J = −1.04 cm−1, and an interchain exchange interaction, zJ′ = 0.34 cm−1. The title compound appears to be a polymorphic form of the blue-violet compound (2) of identical stoichiometry, the X-ray structure of which was recently reported. Magneto-structural correlations in 1 have been made considering both the carboxylato bridging group and the existence of interchain hydrogen bonds. The structure and magnetic properties of 1 are compared with those of the polymorphic form 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号