首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A compound with a linear trinuclear copper(II) cation, [Cu3(μ-protan)2](ClO4)2·H2O (protanH2 = 3,7-bis(3-hydroxypropyl)-1,3,5,7-tetraazabicyclo[3,3,1]-nonane) is formed by reaction of copper(II) perchlorate, 3-aminopropanol, ammonia and methanal. The cation is approximately centrosymmetrical with Cu?Cu = 2.9870(5) and 2.9485(5) Å. The terminal copper(II) ions are coordinated by nitrogen atoms 3 and 7 of the tetraazabicycle (Cu–Nmean = 2.021(5) Å) and the two oxygen atoms of the 3,7-bis(3-olatopropyl) substituents (Cu–Omean = 1.911(3) Å), which also act as bridging groups to the central copper(II) ion (Cu–Omean = 1.926(4) Å). The cation is both helically twisted (dihedral angle N3?N7?N3′?N7′ = 20(1)°) and bent (angle Cu?Cu?Cu = 171(1)°). The copper(II) ions have tetrahedrally twisted square planar primary coordination, with perchlorate ion oxygen atoms weakly coordinated axially to the two terminal copper(II) ions, on opposite sides of the “plane” of the molecule, while the central copper(II) ion is weakly coordinated axially by a water molecule, with all axial Cu–O distances ca. 2.9 Å. One N·CH2·CH2·CH2·O chelate ring for each protan2− ligand shows conformational disorder and the perchlorate ions show rotational disorder. Partial hydrolysis of the protan2− compound gave a compound [{Cu(μ-protan)}Cu(OH)2](ClO4)2·0.5(EtOH) which has a dinuclear cation, with one copper(II) ion in square-planar coordination by tetradentate protan2− and the other in square-planar coordination by the two bridging oxygen atoms of the protan2− ligand and by two hydroxide ions, with Cu?Cu = 3.045(1) Å. With differing mole ratios of the same reactants compounds of the dinuclear cation [{Cu(μ-pta)}2]2+ (ptaH = 3(3-hydroxypropyl)-1,3,5,7-tetraazabicyclo[3,3,1]nonane) are formed.  相似文献   

2.
The structure, spectroscopy and electrochemical properties of a novel dinuclear copper(II) complex, [{Cu(phen)2}2(μ-CH3COO)][PF6]3 where phen = 1,10-phenanthroline, is reported. The crystal structure contains two independent Cu(II) ions, with different geometry around each copper center, which are bridged by an acetate anion. The acetate-bridged ligand shows a syn–anti coordination mode with a trigonal bipyramidal geometry for the Cu(1) center and a distorted square-based pyramidal geometry for the Cu(2) center. The angular structural index parameter τ for Cu(1) and Cu(2) is 0.9 and 0.33, respectively. The copper(II) atoms display a different geometry with a N4O chromophore group and with Cu–O distances of 1.993(5)–1.996(5) Å and Cu–N distances which vary from 1.980(5) to 2.161(6) Å. The intra Cu…Cu separation is 4.9904(5) Å. The effective magnetic moment (μeff) of the complex was measured by the Evans method. The cyclic voltammogram of [{Cu(phen)2}2(μ-CH3COO)][PF6]3 shows two waves at positive potential which are assigned to the two Cu(II/I) reduction couples.  相似文献   

3.
The synthesis, crystal structure and magnetic properties are reported for the new bimetallic compound {(CuL1)[Co(NCS)4]} where L1 = N-rac-5,12-dimethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene. The complex forms a one-dimensional zig-zag coordination polymer along the crystallographic c axis, with Co(II) and Cu(II) ions connected via thiocyanate bridges. The Co(II) centre in the [Co(NCS)4] fragment approximates a distorted tetrahedral symmetry. The Cu(II) geometry is a distorted tetragonal bipyramid with the apical position occupied by the bridging thiocyanate ligand and the basal ones by the four nitrogen atoms from the macrocyclic ring. The polymer chain nearest Cu(1)?Co(1) distances are 6.4152(9) and 6.0988(9) Å and the nearest Cu(1)?Co(1) interchain distances are 6.8609(9), 6.9628(9) and 6.0336(10) Å. The magnetization measurements for the examined compound have been carried out over the range 1.8–300 K. This data suggest ferromagnetic interactions through the thiocyanate bridge.  相似文献   

4.
The synthesis, structural analysis, spectroscopic studies, susceptibility and specific-heat measurements of {[Cu(bmen)2][Pt(CN)4]}n (bmen=N,N′-dimethylethylenediamine) are presented. X-ray crystal-structure analysis revealed that the [Pt(CN)4]2− building blocks are combined with [Cu(bmen)2]2+ units to form a chain-like structure along the a axis. The Cu(II) atoms are hexacoordinated by four nitrogen atoms in the equatorial plane belonging to two molecules of bidentate bmen ligands with average Cu-N distance of 2.043(18) Å. The axial positions are occupied by two nitrogen atoms from bridging [Pt(CN)4]2− anions at a longer axial Cu-N distance of 2.490(4) Å. The compound is characterized by the presence of a weak antiferromagnetic exchange coupling J/kB=0.6 K. Despite the one-dimensional (1D) character of the structure, the analysis of the magnetic properties and specific heat at very low temperatures shows that [Cu(bmen)2][Pt(CN)4] behaves as a two-dimensional (2D) square-lattice Heisenberg magnet with weak interlayer coupling.  相似文献   

5.
The N4O3 coordinating heptadentate imidazolidinyl phenolate ligand, H3L (2-(2′-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) forms with Cu(II) a rare aqua bridged complex [{Cu2(μ-L)(μ-H2O)}2](ClO4)2 · 4.5H2O (1 · 4.5H2O). Complex 1 · 4.5H2O contains two crystallographically different but chemically equivalent dinuclear [Cu2(μ-L)(μ-H2O)]+ cationic units in the asymmetric unit. The copper atoms of each dinuclear unit are in a distorted square-pyramidal environment and are held together by phenolate, imidazolidinyl and aqua bridges with a Cu···Cu separation of av. 3.34 Å. The compound exhibits a very weak antiferromagnetic exchange interaction (J = −0.77 cm−1, ? = J?1?2) between the two copper(II) (S = 1/2) ions. The 1H NMR spectrum of the complex shows a total of 17 hyperfine shifted peaks, as expected from the idealized Cs symmetry of the compound, spread over a very large window of chemical shift, spanning about 250 ppm. The complex, having an appropriate intermetallic separation for catechol binding, shows catecholase like activity in MeCN at 25 °C, with the aerobic oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylquinone (3,5-DTBQ).  相似文献   

6.
The interaction of diethyl (pyridyn-2-ylmethyl)phosphonate (2-pmpe) with Cu(NO3)2 · 6H2O leads to a partial hydrolysis of the starting ligand and formation of the compound of the formula Cu2(2-mpmpe)2(H2O)2(NO3)2, where 2-mpmpe = monoethyl (pyridyn-2-ylmethyl)phosphonate. The crystal and molecular structure of a copper(II) compound was determined by single X-ray diffraction method. Its structure consists of five-coordinated in distorted square planar geometry (CuNO4 chromophore) copper(II) ions doubly bridged by OPO from phosphonate. The Cu?Cu distance is 4.69 Å. The crystal packing is determined by the interdinuclear hydrogen bond system, which leads to a three-dimensional (3D) H-bonds network. The compound was characterized by infrared, ligand field, EPR spectroscopy, and magnetic studies. The magnetic properties of the title compound investigated over the 1.8–300 K, revealed the occurrence of a weak ferromagnetic coupling through phosphonate bridge (J = 1.86 cm−1) and interdimer superexchange coupling through H-bond network (zJ′ = −0.17 cm−1). Spectroscopic and magnetic properties are presented in the light of crystal structure.  相似文献   

7.
A new three-dimensional non-interpenetrating coordination polymer, [{Cu(dps)2(SO4)}·3H2O·DMF]n (1) (dps=4,4′-dipyridyl sulfide) was synthesized and structurally characterized. 1 crystallizes in triclinic system, space group P−1 with cell parameters of a=10.9412(1) Å, b=11.8999(1) Å, c=12.5057(1) Å, V=1400.7(3) Å3, Z=2, Dc=1.573 g cm−3, F(0 0 0)=686, μ=1.059 mm−1. R1=0.0436, wR2=0.1148. In the polymeric architecture, serve as bridging coligands to connect highly puckered [Cu2(dps)2]n frameworks resulting in a 3D motif containing channels for guest molecule inclusion. Quantum chemistry calculation shows that the third-order NLO properties of polymer 1 are controlled by groups and dps ligands, and metal ions have less influence on the third-order NLO properties.  相似文献   

8.
The spectroscopic and magnetic properties, and crystal structure of dark-blue [Cu(2-pca)2]n (1), (2-pca = pyridine-2-carboxylate ion) are described. The copper(II) ions are in strongly tetragonally distorted octahedral environments. They are sequentially bridged by a double out-of-plane carboxylate bridge, resulting in the formation of an infinite chain (1D). The equatorial Cu–O bonds (1.957(3) Å) are significantly shorter than the axial bonds (2.737(4) Å). The crystal structure of the compound is stabilized by interchain hydrogen bonds of the C–H?O type. The intrachain copper–copper separation is 5.178(3) Å, whereas the shortest interchain copper–copper distance is 7.614(6) Å. The magnetic properties, investigated in the temperature range 1.8–300 K, revealed the occurrence of a weak intrachain antiferromagnetic coupling, J = −1.04 cm−1, and an interchain exchange interaction, zJ′ = 0.34 cm−1. The title compound appears to be a polymorphic form of the blue-violet compound (2) of identical stoichiometry, the X-ray structure of which was recently reported. Magneto-structural correlations in 1 have been made considering both the carboxylato bridging group and the existence of interchain hydrogen bonds. The structure and magnetic properties of 1 are compared with those of the polymorphic form 2.  相似文献   

9.
Single crystals of [Cu(men)2(BF4)2] (men = N-methyl-1,2-diaminoethane) (1) were isolated from an aqueous-ethanolic system Cu2+-men-BF4. The crystal structure of 1 consists of [Cu(men)2(BF4)2] molecules. Copper ion exhibits usual distorted octahedral coordination; there are two coordinated men ligands in the equatorial plane with Cu-N bonds of 2.0451(12) and 2.0035(12) Å, while the axial positions are occupied by fluorine atoms from BF4 anions with Cu-F bond of 2.5091(11) Å. The packing of the [Cu(men)2(BF4)2] molecules is governed by N-H?F type hydrogen bonds. The measured ESR spectrum corroborated the presence of Jahn-Teller anisotropy of Cu(II) with g|| = 2.20 and g = 2.06. The magnetic studies in the temperature range 300-2 K reveal that 1 follows the Curie-Weiss law with parameters = 2.1612(1) and θ = −0.233(1) K suggesting the presence of weak antiferomagnetic interactions.  相似文献   

10.
Two polymorphs of an organic-inorganic hybrid compound, Fe(2,2′-bpy)(HPO4)(H2PO4) (1 and 2) (2,2′-bpy=2,2′-bipyridine), have been synthesized by hydrothermal methods and structurally characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and magnetic susceptibility. Crystal data are as follows: Polymorph 1, monoclinic, space group P21/n (No. 14), a=10.904(2) Å, b=6.423(1) Å, c=19.314(3) Å, β=101.161(3)°, and Z=4; Polymorph 2, monoclinic, space group P21/c (No. 14), a=11.014(1) Å, b=15.872(2) Å, c=8.444(1) Å, β=109.085(3)°, and Z=4. Polymorph 1 adopts a chain structure in which each iron atom is coordinated by two nitrogen atoms from 2,2′-bpy ligand and four phosphate oxygen atoms. These infinite chains are extended into a 3-D supramolecular array via π-π stacking interactions of the lateral 2,2′-bpy ligands. The structure of polymorph 2 consists of the same building units, namely FeO4N2 octahedron, HPO4 and H2PO4 tetrahedra, and 2,2′-bpy ligand, which are linked through their vertices forming an undulated sheetlike structure with 4,12 network. Adjacent layers are extended into a 3-D array via π-π stacking interactions of the aromatic groups. Magnetic susceptibility measurement results confirm that the iron atoms in both compounds are present in the +3 oxidation state.  相似文献   

11.
The preparation by hydrothermal reaction and the crystal structure of the iron(III) carboxyethylphosphonate of formula [NH4][Fe2(OH){O3P(CH2)2CO2}2] is reported. The green-yellow compound crystallizes in the monoclinic system, space group Pc(n.7), with the following unit-cell parameters: a=7.193(3) Å, b=9.776(3) Å, c=10.17(4) Å and β=94.3(2)°. It shows a typical layered hybrid organic-inorganic structure featuring an alternation of organic and inorganic layers along the a-axis of the unit cell. The bifunctional ligand [O3P(CH2)2CO2]3− is deprotonated and acts as a linker between adjacent inorganic layers, to form pillars along the a-axis. The inorganic layers are made up of dinuclear Fe(III) units, formed by coordination of the metal ions with the oxygen atoms originating from the [O3P−]2− end of the carboxyethylphosphonate molecules, the oxygen atoms of the [−CO2] end group of a ligand belonging to the adjacent layer and the oxygen atom of the bridged OH group. Each Fe(III) ion is six-coordinated in a very distorted octahedral environment. Within the dimer the Fe-Fe separation is found to be 3.5 Å, and the angle inside the [Fe(1)-O(11)-Fe(2)] dimers is ∼124°. The resulting 3D framework contains micropores delimited by four adjacent dimers in the (bc) planes of the unit cell. These holes develop along the a-direction as tunnel-like pores and [NH4]+ cations are located there. The presence of the μ-hydroxo-bridged [Fe(1)-O(11)-Fe(2)] dimers in the lattice is also responsible for the magnetic behavior of the compound at low temperatures. The compound contains Fe3+ ions in the high-spin state and the two Fe(III) ions are antiferromagnetic coupled. The J/k value of −16.3 K is similar to those found for other μ-hydroxo-bridged Fe(III) dimeric systems having the same geometry.  相似文献   

12.
The reaction of Cu(OH)2 and 2-hydrazino-2-imidazoline hydrobromide surprisingly resulted in complex compound where Cu(II) ions are chelated by a new ligand, namely bisimidazoline (biz). As has been found in the X-ray analysis, the [Cu(biz)2]2+ cations are accompanied by [Cu2Br4]2− anions, which makes the whole compound of metal-mixed-valency type. Both ions are centrosymmetric and quasi-planar. The Cu(II) coordination environment is a rectangle with almost equal Cu–N bond lengths (1.984(3), 1.987(3) Å). The electrostatic interaction of both complex ions is strengthened by two strong N–H···Br and four weaker (C–H···Br, C–H···N) hydrogen bonds. The relatively simple IR and Raman spectra were interpreted with help of quantum calculations carried out at the B3LYP/LanL2DZ level. The characterization of computed normal vibrations and correlating observed bands is given in terms of approximate D2h symmetry. The most intense band resulting from the Cu–N stretching vibration (B3u) was located at 342 cm−1, by 63Cu and 65Cu isotope substitution. The chemical reactions leading to the formation of presented compound are also proposed.  相似文献   

13.
The structure of β-AgAlO2 has been refined from neutron diffraction data by the Rietveld method. The space group is Pna21 with a=5.4306(1) Å, b=6.9802(1) Å, c=5.3751(1) Å, and Z=4. Both cations are tetrahedrally coordinated to oxygen. The tetrahedron around Al is quite regular with distances ranging from 1.75 to 1.77 Å and angles ranging from 107.8 to 111.0°. The tetrahedron around Ag is, however, highly distorted with distances ranging from 2.35 to 2.48 Å and angles ranging from 99.3 to 131.6°. The low bond valence calculated for Ag(I) of 0.895 is attributed to the strong deviation of the O−Ag−O angles from 109.5°. This structure is based on the hexagonal ZnO structure, and we show that the ordered arrangement of M(I) and M(III) cations in this structure directly causes the tetrahedra to distort and tilt.  相似文献   

14.
Three complexes of composition [CrL(X)3], where L = 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine and X = Cl, N3, NCS are synthesized. They are characterized by IR, UV–Vis, fluorescence, EPR spectroscopic, and X-ray crystallographic studies. Structural studies reveal that the Cr(III) ion is coordinated by three N atoms of L in a meridional fashion. The three anions occupy the other three coordination sites completing the mer-N3Cl3 (1) and mer-N3N3 (2 and 3), distorted octahedral geometry. The Cr–N2 has a shorter length than the Cr–N1 and Cr–N3 distances and the order Cr–N(NCS) < Cr–N(N3) < Cr–Cl is observed. They exhibit some of the d–d transitions in the visible and intra-ligand transitions in the UV regions. The lowest energy d–d transition follows the trend [CrLCl3] < [CrL(N3)3] < [CrL(NCS)3] consistent with the spectrochemical series. In DMF, they exhibit fluorescence having π → π character. All the complexes show a rhombic splitting as well as zero-field splitting (zfs) in X-band EPR spectra at 77 K.  相似文献   

15.
Well-crystallized cobalt and nickel hydrogencyanamide, Co(HNCN)2 and Ni(HNCN)2, were synthesized from the corresponding ammonia complexes [M(NH3)6]2+ under aqueous cyanamide conditions. The X-ray and neutron powder data evidence the orthorhombic system and space group Pnnm. The cell parameters for Co(HNCN)2 are a=6.572(1), b=8.805(2), c=3.267(1) Å, and Z=2; for the isotypic Ni(HNCN)2, the cell parameters arrive at a=6.457(1), b=8.768(2), c=3.230(1) Å. The octahedral coordinations of the metal ions are marginally squeezed, with interatomic distances of 4×Co-N=2.134(5) Å, 2×Co-N=2.122(9) Å, and 4×Ni-N=2.133(6) Å, 2×Ni-N=2.035(11) Å. The HNCN units appear as slightly bent (177.5(2)° for Co(HNCN)2 and 175.7(2)° for Ni(HNCN)2) and exhibit cyanamide shape character due to triple- and single-bond C-N distances (1.20(2) vs. 1.33(2) Å for Co(HNCN)2 and 1.15(2) vs. 1.38(2) Å for Ni(HNCN)2). The infrared vibration data compare well with those of the three existing alkali-metal hydrogencyanamides.  相似文献   

16.
Two structurally different complexes, [Cu2(2-NO2Bz)4(denia)1]n (1) and [Cu(2-NO2Bz)2(denia)2(H2O)2] (2), were prepared from the same reaction (where 2-NO2Bz = 2-nitrobenzoate, denia = N,N-diethylnicotinamide) and they are reported together with [Cu2(2-NO2Bz)4(DMF)2] (3) (DMF = N,N-dimethylformamide). The compounds under study were characterized by elemental analysis, electronic, IR and EPR spectra, magnetic measurements over the temperature range of 1.8–300 K and X-ray analysis. The molecular structure of (1) is polymeric, (2) is monomeric and (3) is dimeric. In the polymeric chain of (1), the denia molecules serve as bridges between dimeric Cu2(2-NO2bz)4 units. Each Cu(II) atom has a square-pyramidal arrangement with different chromophores, Cu1O4O′ and Cu2O4N. The Cu–Cu distances are 2.699(1) Å in the dimeric unit and 7.980(3) Å between the dimeric units. In (2) the Cu(II) atom has a tetragonal-bipyramidal environment CuO2N2O′2. In (3) two Cu(II) atoms are bridged by four carboxylate groups of four 2-NO2bz anions in a synsyn arrangement which create a square base about each Cu(II) atom and an apical position is occupied by the O atom of a DMF molecule (CuO4O′). The Cu–Cu distance of 2.633(1) Å is somewhat shorter than in (1). Spectral and magnetic data of the complexes are discussed with their structures.  相似文献   

17.
The synthesis and structure of a pyrazole-based orthogonal ferromagnetically coupled tetracopper(II) 2 × 2 homoleptic grid complex [Cu4(PzOAPyz)4(ClO4)2](ClO4)2 · 6H2O (1), formed by the reaction between the ditopic ligand PzOAPyz and Cu(ClO4)2 · 6H2O, are described. The ligand contains terminal pyrazole and pyrazine residues bound to a central flexible diazine subunit (N–N) as well as one potentially bridging alkoxo group. The two adjacent metal centers are linked by an alkoxo oxygen forming essentially a square Cu4(μ-O4) cluster. In the Cu4(μ-O4) core, out of the four copper centers, two copper centers are penta-coordinated and the remaining two are hexa-coordinated. In each case of hexa-coordination, the sixth position is occupied by one of the oxygen atoms of a coordinated perchlorate ion. Complex 1 has been characterized structurally and magnetically. Although the large Cu–O–Cu bridge angles (137–138°) and short Cu–Cu distances (3.964–3.970 Å) are suitable for the transmission of the expected antiferromagnetic coupling, the square-based Cu4(μ-O4) cluster exhibits an intramolecular ferromagnetic exchange (J = 7.47 cm−1) between the metal centers with an S = 2 magnetic ground state associated with the quasi orthogonal arrangement of the magnetic orbitals (dx2-y2dx2-y2). The exchange pathway parameters have been evaluated from density functional calculations.  相似文献   

18.
The structure of Laves-phase deuteride YFe2D4.2 has been investigated by synchrotron and neutron (ToF) powder diffraction experiments between 60 and 370 K. Below 323 K, YFe2D4.2 crystallizes in a fully ordered, monoclinic structure (s.g. Pc, Z=8, a=5.50663(4), b=11.4823(1), c=9.42919(6) Å, β=122.3314(5)°, V=503.765(3) Å3 at 290 K) containing 4 yttrium, 8 iron and 18 deuterium atoms. Most D-D distances are, within the precision of the diffraction experiment, longer than 2.1 Å; the shortest ones are of 1.96 Å. Seven of eight iron atoms are coordinated by deuterium in a trigonal bipyramid, similar to that in TiFeD1.95−2. The eighth iron atom is coordinated by deuterium in a tetrahedral configuration. The coordination of iron by deuterium, and the iron-deuterium distances point to the importance of the directional bonding between iron and deuterium atoms. The lowering of crystal symmetry due to deuterium ordering occurs at much higher temperature than the magnetic ordering, and is therefore one of the parameters that are at the origin of the magnetic transition at lower temperatures.  相似文献   

19.
The synthesis, crystal structure and magnetic properties of the cyano-bridged complex [{Cu(cyclam)}3{Fe(CN)6}2] · 6H2O are reported. Its structure is made up of centrosymmetric S-shaped pentanuclear [{Cu(cyclam}3{Fe(CN)6)}2] units, in which three [Cu(cyclam)]2+ units are alternatively bridged by two trans-CN groups of [Fe(CN)6]3− anions and water molecules. The pentanuclear Fe2Cu3 units are held together by two complementary and very weak Fe–CN?Cu1 bonds, forming a rope-ladder chain along the c axis. The compound exhibits a ferromagnetic interaction between the Cu(II) and Fe(III) ions as a consequence of the orthogonality of their magnetic orbitals of σ and π nature, respectively. The magnetic data were fitted to the calculated magnetic susceptibility equation for a pentanuclear model, leading to the following magnetic parameters: J1 = 9.0(3) cm−1, J2 = 3.8(4) cm−1, g = 2.2, θ = −1.2 K. These results show that the interactions through the long Cu–N axial bonds are not so weak as is usually assumed.  相似文献   

20.
Two organic-inorganic hybrid compounds, Ga2(4,4′-bpy)(PO4)2, 1, and Ga2(4,4′-bpy)(AsO4)2, 2, have been synthesized under hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction. The two compounds are isostructural and crystallize in the triclinic space group (No. 2) with a=4.9723(9) Å, b=5.770(1) Å, c=11.812(2) Å, α=78.268(3)°, β=89.159(3)° γ=88.344(3)°, V=331.7(2) Å3, Z=1, and R1=0.0377 for 1, and a=5.1111(7) Å, b=5.9327(8) Å, c=11.788(2) Å, α=79.497(2)°, β=88.870(2)°, γ=88.784(2)°, V=351.3(2) Å3, and R1=0.0264 for 2. The structure consists of neutral sheets of GaXO4 (X=P or As) which are pillared through 4,4′-bipyridine ligands. Each oxide layer, which is formed only by four-membered rings, is constructed from corner-sharing GaO4N trigonal bipyramids and XO4 tetrahedra. The title compounds are two of the few examples in which the gallium atoms are exclusively five-coordinate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号