首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For N-(thio)phosphorylthioureas of the common formula RC(S)NHP(X)(OiPr)2HLI (R = N-(4′-aminobenzo-15-crown-5), X = S), HLII (R = N-(4′-aminobenzo-15-crown-5), X = O), HLIII (R = PhNH, X = S), HLIV (R = PhNH, X = O), and (N,N′-bis-[C(S)NHP(S)(OiPr)2]2-1,10-diaza-18-crown-6) H2LV, salts LiLI,III,IV, NaLIIV, KLIIVM2LV (M = Li+, Na+, K+), Ba(LI,III,IV)2, and BaLV have been synthesized and investigated. Compounds NaLI,II quantitatively drop out as a deposit in ethanol medium, allowing the separation of Na+ and K+ cations. This effect is not displayed for the other compounds. The crystal structures of HLIII and the solvate of the composition [K(Me2CO)LIII] have been investigated by X-ray crystallography.  相似文献   

2.
Six new 3-alkylpyridine alkaloids, topsendines A–F (16), and one new naturally occurring product, 2-methyl-12-(pyridine-3-yl)dodecanal (7), were isolated from an undescribed species of Hainan sponge Topsentia. The structures of the new compounds were determined by extensive 2D NMR experiments, HR-EI/ESI-MS spectrometry measurements, and by comparison of their NMR data with those of structurally related compounds in the literature. In bioassay, compounds 1, 3, and 5 showed inhibitory actions on delayed rectifier K+ currents (IK) in rat acutely dissociated hippocampal neurons at the concentration of 100 μM, with the percentage of inhibition of 85.9±3.9%, 87.1±4.4%, and 76.2±12.2%, respectively.  相似文献   

3.
The synthesis and characterization of new symmetrical FeII complexes, [FeLA(NCS)2] (1), and [FeLBx(NCS)2] (24), are reported (LA is the tetradentate Schiff base N,N′-bis(1-pyridin-2-ylethylidene)-2,2-dimethylpropane-1,3-diamine, and LBx stands for the family of tetradentate Schiff bases N,N′-bis[(2-R-1H-imidazol-4-yl)methylene]-2,2-dimethylpropane-1,3-diamine, with: R = H for LB1 in 2, R = Me for LB2 in 3, and R = Ph for LB3 in 4). Single-crystal X-ray structures have been determined for 1 (low-spin state at 293 K), 2 (high-spin (HS) state at 200 K), and 3 (HS state at 180 K). These complexes remain in the same spin-state over the whole temperature range [80–400 K]. The dissymmetrical tetradentate Schiff base ligands LCx, N-[(2-R2-1H-imidazol-4-yl)methylene]-N′-(1-pyridin-2-ylethylidene)-2,2-R1-propane-1,3-diamine (R1 = H, Me; R2 = H, Me, Ph), containing both pyridine and imidazole rings were obtained as their [FeLCx(NCS)2] complexes, 510, through reaction of the isolated aminal type ligands 2-methyl-2-pyridin-2-ylhexahydropyrimidine (R1 = H, 57) or 2,5,5-trimethyl-2-pyridin-2-ylhexahydropyrimidine (R1 = Me, 810) with imidazole-4-carboxaldehyde (R2 = H: 5, 8), 2-methylimidazole-4-carboxaldehyde (R2 = Me: 6, 9), and 2-phenyl-imidazole-4-carboxaldehyde (R2 = Ph: 7, 10) in the presence of iron(II) thiocyanate. Together with the single-crystal X-ray structures of 7 and 9, variable-temperature magnetic susceptibility and Mössbauer studies of 510 showed that it is possible to tune the spin crossover properties in the [FeLCx(NCS)2] series by changing the 2-imidazole and/or C2-propylene susbtituent of LCx.  相似文献   

4.
A new fluorescein-based chemodosimeter (II) for Hg2+ ion was designed and synthesized, and it displayed excellent selective and sensitive toward Hg2+ ion over other commonly metal ions in aqueous media. II was a colorless, non-fluorescent compound. Upon addition of Hg2+ to the solution of II, the thiosemicarbazide moiety of II would undergo an irreversible desulfurization reaction to form its corresponding oxadiazole (IV), a colorful and fluorescent product. During this process, the spirocyclic ring of II was opened, causing instantaneous development of visible color and strong fluorescence emission in the range of 500-600 nm. Based on the above mechanism, a fluorogenic Hg2+-selective chemodosimeter was developed. The fluorescence increase is linearly with Hg2+ concentration up to 1.0 μmol L−1 with a detection limit of 8.5 × 10−10 mol L−1 (3σ). Compared with the rhodamine-type chemodosimeter, II is more stable in aqueous media and exhibits higher sensitivity toward Hg2+. The findings suggest that II will serve as a practical chemodosimeter for rapid detection of Hg2+ concentrations in realistic media.  相似文献   

5.
6.
The (13E,19E)-N1′,N3′-bis[4-(diethylamino)-2-hydroxybenzylidene]malonohydrazide (L) has been developed for the detection of Th4+ ions using dual channel signalling system. The UV–vis absorbance and fluorescence spectroscopic data revealed the formation of L–Th4+ complex in 1:1 equilibrium. The density functional theory (DFT) also confirms the optimum binding cavity for the recognition of metal ion. The binding constant computed from different mathematical models for an assembly of L–Th4+. The detection limit of L for Th4+ recognition is to a concentration down to 0.1 μM (0.023 μg g−1). The present sensing system is also successfully applied for the detection of Th4+ ion present in soil near nuclear atomic plants.  相似文献   

7.
Chiral and achiral p-tert-butyl-calix[4]arene bisphosphites (L1L3) have been synthesized by the reaction of p-tert-butyl-calix[4]arene and the phosphorodichloridites, ROPCl2 [R = (1S,2R,5R)-(+)-iso-menthyl (L1), (1R,2S,5R)-(−)-menthyl (L2) or C6H4But-4 (L3)]. These bisphosphites function as chelating ligands in palladium(II) and platinum(II) complexes which are formed in good yields by the reaction of PdCl2(PhCN)2, MCl2(COD) (M = Pd or Pt) or PdMeCl(COD) with the respective calix[4]arene bisphosphite. Single crystal X-ray diffraction studies performed on the complexes [PdCl2(L1)], [PdCl2(L2)], [PdCl2(L3)] and [PtCl2(L3)] reveal a near square planar geometry around the metal with the two chloride ligands in a cis disposition. The crystal packing in the complexes [PdCl2(L1)] and [PdCl2(L2)], which crystallize in the chiral (P6122) space group, shows different hydrophobic channels with intermolecular C–H?Cl hydrogen bonding. The complexes [PdCl2(L3)] and [PtCl2(L3)] are isostructural and the molecules in the crystal lattice are linked by intermolecular C–H?Cl and C–H?O hydrogen bonds.  相似文献   

8.
Two neutral ligands, L1 · 2H2O and L2 · H2O, and seven complexes, [Cu(pmb)2(L1)] (1), [Cu(pmb)2(L2)] (2), [Cu(Ac)2(L2)] · 4H2O (3), [Cu(4-aba)2(L2)] (4), [Ag(4-ts)(L1)(H2O)] (5), [Ag2(epes)2(L1)] · 2H2O (6), [Ag(1,5-nds)0.5(L2)] · 0.5C2H5OH · H2O (7) [where L1 = 1,1′-(1,4-butanediyl)bis(2-methylbenzimidazole); L2 = 1,1′-(1,4-butanediyl)bis(2-ethylbenzimidazole), pmb = p-methoxybenzoate anion; Ac = acetate anion; 4-aba = 4-aminobenzoate anion; 4-ts = p-toluenesulfonate anion; epes = N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonate) anion; 1,5-nds = 1,5-naphthalenedisulfonate anion], have been synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction. The L1 and L2 ligands in compounds 17 act as bridging ligands, linking metal ions into chain structures. The chains in compounds 3, 4 and 6 interlace with each other by hydrogen bonds to generate 3D supramolecular structures. In compound 5, π–π interactions between adjacent L1 ligands hold the chains to a supramolecular layer. In compound 7, the sulfonate anions act as counterions in the framework. The thermal stabilities of 3, 6 and 7, and the luminescent properties for 57 in the solid states are also discussed.  相似文献   

9.
The dimeric starting material [Ru(η6-p-cymene)(μ-Cl)Cl]2 reacts with the phosphino-amides o-Ph2P–C6H4CO–NH–R [R = iPr (a), Ph (b), 4-MeC6H4 (c), 4-FC6H4 (d)] to give the mononuclear compounds 1ad [RuCl(η6-p-cymene)(o-Ph2P–C6H4–CO–NH–R)]Cl. The subsequent reaction of these complexes with KPF6 produced the cationic species 2ad [RuCl(η6-p-cymene)(o-Ph2P–C6H4–CO–NH–R)][PF6] in which phosphino-amides also act as rigid P,O-chelating ligands. The molecular structures of 2bd were determined crystallographically. Amide deprotonation is achieved when complexes 2ad were made react with 1 M aqueous solution of KOH, affording the corresponding neutral species 3ad [RuCl(η6-p-cymene)(o-Ph2P–C6H4–CO–N–R)] in which a P,N-coordination mode is suggested.  相似文献   

10.
The reactions of Cu(ClO4)2·6H2O with 6-(benzylamino)purine derivatives in a stoichiometric 1:2 metal-to-ligand ratio led to the formation of penta-coordinated dinuclear complexes of the formula [Cu2(μ-L18)4(ClO4)2](ClO4)2·nsolv, where L1 = 6-(2-fluorobenzylamino)purine (complex 1), L2 = 6-(3-fluorobenzylamino)purine (2), L3 = 6-(4-fluorobenzylamino)purine (3), L4 = 6-(2-chlorobenzylamino)purine (4), L5 = 6-(3-chlorobenzylamino)purine (5), L6 = 6-(4-chlorobenzylamino)purine (6), L7 = 6-(3-methoxybenzylamino)purine (7) and L8 = 6-(4-methoxybenzylamino)purine (8); n = 0–4 and solv = H2O, EtOH or MeOH. All the complexes have been fully characterized by elemental analysis, FTIR, UV–Vis and EPR spectroscopy, and by magnetic and conductivity measurements. Variable temperature (80–300 K) magnetic susceptibility data of 18 showed the presence of a strong antiferromagnetic exchange interaction between two Cu(II) (S = 1/2) atoms with J ranging from −150.0(1) to −160.3(2) cm−1. The compound 6·4EtOH·H2O was structurally characterized by single crystal X-ray analysis. The Cu?Cu separation has been found to be 2.9092(8) Å. The antiradical activity of the prepared compounds was tested by in vitro SOD-mimic assay with IC50 in the range 8.67–41.45 μM. The results of an in vivo antidiabetic activity assay were inconclusive and the glycaemia in pre-treated animals did not differ significantly from the positive control.  相似文献   

11.
12.
13.
The ternary complexes of [CuII(Hist)(Tyr)]+1 and [CuII(Hist)(Trp)]+2 have been synthesized, structurally characterized and their DNA binding and cleavage abilities probed. The intrinsic binding constants (Kb) for complexes/CT-DNA were also determined (Kb = 2.7 × 102 for complex 1 and Kb = 2.2 × 102 for complex 2). These complexes exhibit their nuclease activity on plasmid DNA, which seems to depend on the nature of the aromatic moiety. The DNA hydrolytic cleavage rate constants were also determined for complexes 1 and 2, which are 0.91 and 0.79 h−1, respectively.  相似文献   

14.
The heavy analogues of the anionic 6π-electron systems, lithium 1,2-disila-3-germacyclopentadienide 2 · [Li+(thf)], 1,2-disila-3,4-digerma- and 1,2,3,4-tetrasilacyclobutadiene dianions 72 · 2[K+(thf)2] and 82 · 2[K+(thf)2], were synthesized by the reduction of the neutral precursors 1, 3 and 4, respectively. 2 · [Li+(thf)], the heavy analogue of the cyclopentadienide ion, is an aromatic compound, whereas 72 · 2[K+(thf)2] and 82 · 2[K+(thf)2], the heavy analogues of the cyclobutadiene dianion, are both non-aromatic.  相似文献   

15.
Complexes of general formula [CuL4][BF4] (L = benzonitrile – PhCN 2 or phenylacetonitrile – BzCN 3) have been prepared and structurally characterized by NMR spectroscopy and X-ray crystallography. Their structure and reactivity have been compared to the well known [Cu(MeCN)4][BF4] (1). The 63Cu line width and the 63Cu chemical shift have been evaluated by varying the temperature and the concentration of the complex 2 in benzonitrile solutions. The phenylacetonitrile solutions of the complex 3 give extremely broad signals which are beyond detection. Accordingly, compound 3 has been studied by 63Cu MAS NMR spectroscopy. The solution NMR data are consistent to the prevalence of dynamic equilibrium between tetra- and low-coordinated species in both complexes. The X-ray structure of 3 revealed that the copper(I) atom sits in a slightly distorted tetrahedral geometry, surrounded by four BzCN ligands.  相似文献   

16.
Vasoactive intestinal peptide (VIP) receptors are expressed on various tumor cells in much higher density than somatostatin receptors, which provides the basis for radiolabeling VIP as tumor diagnostic agent. However, fast proteolytic degradation of VIP in vivo limits its clinical application. With the aim to develop and evaluate new ligands for depicting the VIP receptors with positron emission tomography (PET), the structure modified [R8,15,21, L17]-VIP analog was radiolabeled with 18F using two different methods. With the first method, N-4-[18F]fluorobenzoyl-[R8,15,21, L17]-VIP ([18F]FB-[R8,15,21, L17]-VIP 7) was produced in a decay-corrected radiochemical yield (RCY) of 33.6 ± 3%, a specific radioactivity of 255 GBq/μmol (n = 5) within 100 min in four steps. Similarly, N-4-[18F](fluoromethyl)-benzoyl-[R8,15,21, L17]-VIP ([18F]FMB-[R8,15,21, L17]-VIP 8) was synthesized in a RCY of 34.85 ± 5%, a specific radioactivity of 180 GBq/μmol (n = 5) within 60 min in only one step. The two products 7 and 8 were both shown good stability in HSA. Moreover, the low bone uptakes of 7 and 8 in vivo of mice showed good defluorination stability.  相似文献   

17.
Ruthenium monoterpyridine complexes with the tridentate 2,6-bis(benzimidazol-2-yl)pyridine (LH2), [Ru(trpy)(LH2)]2+, [1]2+ and [Ru(trpy)(L2−)], 2 (trpy = 2,2′:6′,2″-terpyridine) have been synthesized. The complexes have been authenticated by elemental analyses, UV–Vis, FT-IR, 1H NMR spectra and their single crystal X-ray structures. Complexes [1]2+ and 2 exhibit strong MLCT band near 475 and 509 nm, respectively, and are found to be very much dependent on solution pH. The successive pH dependent dissociations of the N–H protons of benzimidazole moiety of LH2 in [1]2+ lead to the formation of 2. The proton induced inter-convertibility of [1]2+ and 2 has been monitored via UV–Vis spectroscopy and redox features. The two pKa values, 5.75 and 7.70, for complex [1]2+ have been determined spectroscopically.  相似文献   

18.
1,8-Naphthyridine (napy) and terpyridine-analogous (N,N,C) tridentate ligands coordinated ruthenium (II) complexes, [RuL(napy-κ2N,N′) (dmso)](PF6)2 (1: L=L1=N″-methyl-4′-methylthio-2,2′:6′,4″-terpyridinium, 2: L = L2 = N″-methyl-4′-methylthio-2,2′:6′,3″-terpyridinium) were prepared and their chemical and electrochemical properties were characterized. The structure of complex 1 was determined by X-ray crystallographic study, showing that it has a distorted octahedral coordination style. The cyclic voltammogram of 1 in DMF exhibited two reversible ligand-localized redox couples. On the other hand, the CV of 2 shows two irreversible cathodic peaks, due to the Ru-C bond of 2 containing the carbenic character. The IR spectra of 1 in CO2-saturated CH3CN showed the formation of Ru-(η1-CO2) and Ru-CO complexes under the controlled potential electrolysis of the solution at −1.44 V (vs. Fc/Fc+). The electrochemical reduction of CO2 catalyzed by 1 at −1.54 V (vs. Fc/Fc+) in DMF-0.1 M Me4NBF4 produced CO with a small amount of HCO2H.  相似文献   

19.
A structural study of lanthanide complexes with the deprotonated form of the monobracchial lariat ether N-2-salicylaldiminatobenzyl-aza-18-crown-6 (L4) (Ln = La(III)–Tb(III)) is presented. Attempts to isolate complexes of the heaviest members of the lanthanide series were unsuccessful. The X-ray crystal structures of [Pr(L4)(H2O)](ClO4)2 · H2O · C3H8O and [Sm(L4)(H2O)](ClO4)2 · C3H8O show the metal ion being bound to the eight donor atoms of the ligand backbone. Coordination number nine is completed by the oxygen atom of an inner-sphere water molecule. Two different conformations of the crown moiety (labelled as A and B) are observed in the solid state structure of the Pr(III) complex, while for the Sm(III) complex only conformation A is observed. The complexes were also characterized by means of theoretical calculations performed in vacuo at the HF level, by using the 3-21G basis set for the ligand atoms and a 46 + 4fn effective core potential for lanthanides. The optimized geometries of the Pr(III) and Sm(III) complexes show an excellent agreement with the experimental structures obtained from X-ray diffraction studies. The calculated relative energies of the A and B conformations for the different [Ln(L4)(H2O)]2+ complexes (Ln = La, Pr, Sm, Ho or Lu) indicate a progressive stabilization of the A conformation with respect to the B one upon decreasing the ionic radius of the Ln(III) ion. For the [Ln(L4)(H2O)]2+ systems, most of the calculated bond distances between the metal ion and the coordinated donor atoms decrease along the lanthanide series, as usually observed for Ln(III) complexes. However, our ab initio calculations provide geometries in which the Ln–O(5) bond distance [O(5) is an oxygen atom of the crown moiety] increases across the lanthanide series from Sm(III) to Lu(III).  相似文献   

20.
Mononuclear complexes of the type, M(CO)4[Se2P(OR)2] (M = Mn, R = iPr, 1a; Et, 1b; M = Re, R = iPr, 3a; Et, 3b) can be prepared from either [-Se(Se)P(OiPr)2]2 (A) or [Se{-Se(Se)P(OEt)2}2] (B) with M(CO)5Br. O,O′-dialkyl diselenophosphate ([(RO)2PSe2]-, abbreviated as dsep) ligands generated from A and B act as a chelating ligand in these complexes. Upon refluxing in acetonitrile, these mononuclear complexes yield dinuclear complexes with a general formula of [M2(CO)6{Se2P(OR)2}2] (M = Mn, R = iPr, 2a; Et, 2b; M = Re, R = iPr, 4a; Et, 4b). Dsep ligands display a triconnective, bimetallic bonding mode in the dinuclear compounds and this kind of connective pattern has never been identified in any phosphor-1,1-diselenoato metal complexes. Compounds 2b, 3b, and 4 are structurally characterized. Compounds 2b and 3b display weak, secondary Se?Se interactions in their lattices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号