首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photomovement of the Gliding Cyanobacterium Synechocystis sp. PCC 6803   总被引:3,自引:0,他引:3  
Abstract— Using a computerized videomicroscope motion analysis system, we investigated the photomovements of two Synechocystis sp. (PCC 6803 and ATCC 27184). Synechocystis sp. PCC 6803 displays a relatively slow gliding motion. The phototactic and photokinetic speeds of this cyanobacterium in liquid media were 5μm/min and 15.8 μm/min, respectively, at 3μmol/m2/s of stimulant white light. Synechocystis sp. PCC 6803 senses light direction rather than intensity for phototaxis. Synechocystis sp. ATCC 27184 showed a weak photokinesis but no phototaxis. Analysis of Synechocystis sp. ATCC 27184 suggests that the loss of phototaxis results from spontaneous mutation during several years of subculture. When directional irradiation was applied, the cell population of Synechocystis sp. PCC 6803 began to deviate from random movement and reached maximum orientation at 5 min after the onset of stimulant white light. Synechocystis sp. PCC 6803 showed high sensitivity to the stimulant white light of fluence rates as low as 0.002 |unol/m2/s. Neither 1,3-dichlorophenyldimethyl urea nor cyanide affected phototactic orientation, whereas cyanide inhibited gUding speed. This result suggests that the phototaxis of Synechocystis sp. PCC 6803 is independent of photosynthetic phosphorylation and that its gliding movement is primarily powered by oxidative phosphorylation. In the visible wavelength region, 560 nm, 660 nm and even 760 nm caused positive phototaxis. However, 360 nm light induced strikingly negative phototaxis. Therefore, at least two independent photoreceptors may exist to control phototaxis. The photoreceptor for positive phototaxis appears likely to be a phytochrome-like tetrapyrrole rather than chlorophyll a .  相似文献   

2.
Cyanobacterial phytochromes are a diverse family of light receptors controlling various biological functions including phototaxis. In addition to canonical bona fide phytochromes of the well characterized Cph1/plant-like clade, cyanobacteria also harbor phytochromes that absorb green, violet or blue light. The Synechocystis PCC 6803 Cph2 photoreceptor, a phototaxis inhibitor, is unconventional in bearing two distinct chromophore-binding GAF domains. Whereas the C-terminal GAF domain is most likely involved in blue-light perception, the first two domains correspond to a Cph1-like photosensory module lacking the PAS domain. Biochemical and spectroscopic studies show that this region switches between red (P(r) ) and far-red (P(fr) ) absorbing states. Unlike Cph1, the P(fr) state of Cph2 decays rapidly in darkness. Mutations close to the PCB chromophore further destabilize the P(fr) state without drastically affecting the spectroscopic features such as the quantum efficiency of P(r) →P(fr) conversion, fluorescence, or the Resonance-Raman signature of the chromophore. Overall, the PAS-less photosensory module of Cph2 resembles Cph1 including its mode of isomerisation, but the P(fr) state is unstable.  相似文献   

3.
Inactivation of the genes for the cyanobacterial phytochromes cph1 and cph2 in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 affected the growth of the cells under certain light conditions. Differences in growth were detected by recording growth curves and in competition experiments. Mutation of cph1 and cph2 resulted in different effects. The cph1-mutant strains exhibited a reduced growth rate under far-red light (FRL), whereas the growth of the cph2-mutant strains was inhibited by red light (RL). The growth rate of a cph1- / cph2- double mutant was reduced under both RL and FRL. Furthermore, cph1-, cph2- as well as double-mutant strains showed impaired growth under high-light (HL) conditions. Acclimation of the photosynthetic apparatus of the mutants to RL, FRL and HL, as determined by pigment analysis, was similar to that of the wild type.  相似文献   

4.
In the filamentous, nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, red light (630 nm) decreased, whereas far-red light (720 nm) increased cellular adenosine 3',5'-cyclic monophosphate (cAMP) content. To find a red and far-red light photoreceptor that triggers the cAMP signal cascade, we disrupted 10 open reading frame having putative chromophore-binding GAF domains. The response of the cellular cAMP concentration to red and far-red light in each open reading frame disruptant was determined. It was found that only the mutant of the gene all2699 failed to respond to far-red light. The open reading frame named as aphC encoded a protein with 920 amino acids including GAF domains similar to those involved in Cph2, a photoreceptor of Synechocystis sp. PCC6803. To determine which adenylate cyclase (AC) is responsible for far-red light signal, we disrupted all AC genes and found that CyaC was the candidate. The enzymatic activity of CyaC might be controlled by a far-red light photoreceptor through the phosphotransfer reaction. The site-specific mutant of the Asp59 residue of the receiver (R1) domain of CyaC lost its light-response capability. It was suggested that the far-red light signal was received by AphC and then transferred to the N-terminal response regulator domain of CyaC. Then its catalytic activity was stimulated, which increased the cellular cAMP concentration and drove the subsequent signal transduction cascade.  相似文献   

5.
The CyanoP protein is a cyanobacterial homolog of the PsbP protein, which is an extrinsic subunit of photosystem II (PSII) in green plant species. The molecular function of CyanoP has been investigated in mutant strains of Synechocystis but inconsistent results have been reported by different laboratories. In this study, we generated and characterized a Synechocystis mutant in which entire region of the CyanoP gene was eliminated. After repeated subculture in CaCl2-depleted medium, growth retardation was clearly observed for a CyanoP knockout mutant of Synechocystis sp. PCC 6803 (?P). The PSII-mediated oxygen-evolving activity of the ?P cells was more susceptible to depletion of CaCl2 than that of wild-type cells. The 77 K fluorescence emission spectra indicated that energy coupling between phycobilisome and PSII was perturbed in both wild-type and ?P cells under CaCl2-depleted conditions, and was more evident for the ?P mutant. To examine the association of CyanoP with PSII complexes, we tested several detergents for solubilization of thylakoid membranes and showed that CyanoP was partly included in fractions containing large protein complexes in gel-filtration analysis. These results indicate that CyanoP constitutively stabilizes PSII functionality in vivo.  相似文献   

6.
The unicellular cyanobacterium Synechocystis sp. Strain PCC 6,803 exhibits phototaxis by moving along a surface towards a light source. This process requires Type IV pili and a phytochrome-like photoreceptor coupled to a complex signal transduction pathway. Cells progress through different phases of interaction before the development of finger-like projections moving in the direction of the light that are characteristic of phototaxis. To probe the interaction between individual cells during the initial phase of phototaxis we tracked and analyzed a large number of cells. We observed that individual cells have limited motility, but when cells divide and/or aggregate to attain a certain minimal group size, enhanced motility and phototaxis is observed. At the later stages of motility, there is noticeable phototactic behavior which results in the appearance of the finger-like projections. Our results indicate that cells prefer to move over areas previously traversed by other cells and confine themselves to these areas and that cells alter local surface characteristics allowing for enhanced motility. Based on cell tracking data we present a preliminary random walk model showing the forces that might interact to create the typical phases of phototaxis and motility. In this model, we can simulate the formation of finger-like projections that are characteristic of phototaxis.  相似文献   

7.
Asymmetric reduction of ketone by a microalga, Synechocystis sp. PCC 6803, smoothly afforded to the corresponding (S)-alcohol in excellent enantiomeric excess by the aid of illumination of orange and red LED lights which are more effective than other LEDs such as blue and green lights. The condition under minimum energy flux (1.0 W/m2) of orange-red LEDs is enough for the reduction of ketone, and it seems that orange-red light rather effectively forwarded the regeneration of coenzyme.  相似文献   

8.
Light, oxygen or voltage (LOV) domains function as blue-light sensors in the phototropin family of photoreceptors found in plants, algae and bacteria. We detected putative LOV domains (Alr3170-LOV, All2875-LOV and Alr1229-LOV) in the genome of a filamentous cyanobacterium, Anabaena sp. PCC 7120. These cyanobacterial LOV domains are closely clustered with the known LOV domains. Alr3170-LOV and A112875-LOV carry the conserved cysteine residue unique to the photoactive LOV, whereas Alr1229-LOV does not. We expressed these three LOV domains in Escherichia coli and purified them. In fact, Alr3170-LOV and A112875-LOV that are conserved in Nostoc punctiforme, a related species, bound flavin mononucleotide and showed spectral changes unique to known LOV domains on illumination with blue light. Alr3170-LOV was completely photoreduced and dark reversion was slow, whereas A112875-LOV was slowly photoreduced and dark reversion was rapid. For comparison, AvA112875-LOV in a closely related A. variabilis was also studied as a homolog of A112875-LOV. Finally, we observed that Alr1229-LOV that is not conserved in N. punctiforme showed no flavin binding.  相似文献   

9.
Site-directed psbA mutants at the tyrosine Y112 position have been generated in Synechocystis PCC6803 cells. The mutation Y112F does not affect photosystem II (PSII) activity as compared with control 4 delta 1K cells. However, the Y112L mutant exhibits a photosynthetically impaired phenotype. PSII activity is not detectable in this mutant when grown at 30 mumol photons m-2 s-1, while low levels of the D1 and D2 proteins and oxygen evolution activity are present in the mutant cells grown at a low light intensity (0.5-1 mumol m-2 s-1). The recombination of the QB-/S2,3 states of PSII in the Y112L mutant cells as detected by thermoluminescence (TL) is altered. The TL signal emission maximum of these cells due to charge recombination of the S2,3/QB- occurs at 20 degrees C as compared to 35-40 degrees C for the wild-type cells, indicating a possible change in the S2,3/Yz equilibrium. The Y112L mutant cells are rapidly photoinactivated and impaired in the recovery of the PSII activity. These results suggest that replacement of the aromatic residue at position Y112 by a hydrophobic amino acid may alter the function of the donor-side activity and affects the degradation and replacement of the PSII core proteins.  相似文献   

10.
Abstract— A radiation-resistant Micrococcus sp. and a colorless mutant subject to gamma radiation were found to have identical killing curves. Similar results were obtained with ultraviolet light. However when exposed to visible light in the presence of the photosensitizer, toluidine blue, the pigmented wild-type was unaffected whereas the colorless mutant was killed. Sarcina lutea and a colorless mutant were killed at similar rates following exposure to x-rays and U.V. light, whereas previous studies have demonstrated that the pigmented wild-type is protected against lethal photosensitizations by visible light. It is concluded that the effect of carotenoid pigments in radiation damage is limited to protecting cells against the lethal effects of visible light and is without effect at shorter wavelengths.  相似文献   

11.
Unicellular thermophilic cyanobacterium Synechococcus elongatus displayed phototaxis on agar plate at 55 degrees C. Equal-quantum action spectra for phototactic migration were determined at various fluence rates using the Okazaki Large Spectrograph as the light source. The shapes of the action spectra drastically changed depending on the fluence rate of the unilateral monochromatic irradiation: at a low fluence rate (3 mumol/m2/s), only lights in the red region had significant effect; at a medium fluence rate (10 mumol/m2/s), four major action peaks were observed at 530 nm (green), 570 nm (yellow), 640 nm (red) and 680 nm (red). At high fluence rates (30-90 mumol/m2/s), the former two peaks remained, while red peaks at 640 nm and 680 nm disappeared and, interestingly, an action peak around 700-740 nm (far-red) newly appeared. These results indicate that two or more distinct photoreceptors are involved in the phototaxis and that suitable photoreceptors are selectively active in response to the stimulus of light fluence rates. Far-red or red background lights irradiated vertically from above drastically inhibited phototaxis toward red light or far-red light, respectively. These results indicate involvement of some phytochrome(s).  相似文献   

12.
Protein kinase transduction pathways are thought to be involved in light signaling in plants, but other than the photoreceptors, no protein kinase activity has been shown to be light-regulated in vivo. Using an in-gel protein kinase assay technique with histone H III SS as an exogenous substrate, we identified a light-regulated protein kinase activity with an apparent molecular weight ca 50 kDa. The kinase activity increased transiently after irradiation of dark-grown seedlings with continuous far red light (FR) and blue light (B) and decreased after irradiation with red light (R). The maximal activation was achieved after 30 min to 1 h with FR or B. After irradiation times longer than 2 h, the kinase activity decreased to below the sensitivity level of the assay. In Arabidopsis mutants lacking either the photoreceptors phytochrome A, phytochrome B or the blue-light receptor cryptochrome 1, kinase activity was undetectable, whereas in the photomorphogenic mutants cop1 and det1 the kinase activity was also observed in the absence of light signals, though still stimulated by B and FR. Interestingly, the R inhibition of the kinase activity was lost in the mutant hy5. Pretreatment with cycloheximide blocked the kinase activity.  相似文献   

13.
The BLUF protein Slr1694 from the cyanobacterium Synechocystis sp. PCC6803 is characterized by absorption and emission spectroscopy. Slr1694 expressed from E. coli which non-covalently binds FAD, FMN, and riboflavin (called Slr1694(I)), and reconstituted Slr1694 which dominantly contains FAD (called Slr1694(II)) are investigated. The receptor conformation of Slr1694 (dark adapted form Slr1694(r)) is transformed to the putative signalling state (light adapted form Slr1694(s)) with red-shifted absorption and decreased fluorescence efficiency by blue-light excitation. In the dark at 22 degrees C, the signalling state recovers back to the initial receptor state with a time constants of about 14.2s for Slr1694(I) and 17s for Slr1694(II). Quantum yields of signalling state formation of approximately 0.63+/-0.07 for both Slr1694(I) and Slr1694(II) were determined by transient transmission measurements and intensity dependent steady-state transmission measurements. Extended blue-light excitation causes some bound flavin conversion to the hydroquinone form and some photo-degradation, both with low quantum efficiency. The flavin-hydroquinone re-oxidizes slowly back (time constant 5-9 min) to the initial flavoquinone form in the dark. A photo-cycle dynamics scheme is presented.  相似文献   

14.
Insight into the influence of UV-C radiation on the evolutionary relationship between prokaryotic and eukaryotic algae was studied in seven species of algae exposed to different UV-C irradiances. The order of their acclimation (from most tolerant to sensitive) is Synechococcus sp. PCC7942 (Cyanophyta), Synechocystis sp. PCC6803 (Cyanophyta), Chlorella protothecoides (Chlorophyta), Chlamydomonas reinhardtii (Chlorophyta), Phaeodactylum  tricornutum (Bacillariophyta), Alexandrium  tamarense (Pyrrhophyta) and Dicrateria  zhanjiangensis (Chrysophyta). These results are in accordance with the algal evolution process that is generally accepted and proved by fossil record. It shows that UV-C radiation is an important environmental factor that cannot be ignored in the evolutionary process from prokaryotic algae to eukaryotic algae. The threshold of UV-C radiation at which prokaryotic algae can survive but eukaryotic algae cannot was found to be approximately 0.09 W m−2. This was the first time to determine with precision the irradiance level at which UV-C contributed as a selection pressure of evolution. Furthermore, the effects of UV-C radiation on photosynthetic performance, growth rate and pigment content were investigated in two species of prokaryotic algae: Synechococcus sp. PCC7942 and Synechocystis sp. PCC6803, and two species of eukaryotic algae: C. reinhardtii and C. protothecoides . After 6 days of exposure, the contents of chlorophyll a and carotenoids decreased in all species, moreover reduction in C. reinhardtii and C. protothecoides was more obvious than in Synechococcus sp. PCC7942 and Synechocystis sp. PCC6803. The ability to photosynthesize followed the same trend as the pigments.  相似文献   

15.
In this work, mycosporine-like amino acids (MAAs) of Synechocystis sp. PCC 6803 were characterized and were investigated on UV induction and protective ability. High performance liquid chromatographic (HPLC) studies revealed three major compounds in the MAAs. By UV absorption and mass spectra analysis, one of the compounds was tentatively identified as mycosporine-tau (M-tau). One novel compound similar to usujirene was tentatively named as dehydroxylusujirene, and the other novel compound was named as M-343 according to its absorption maximum. In vivo experiments indicated that M-tau was induced by both UV-A and UV-B, while dehydroxylusujirene and M-343 were only induced by UV-A, suggesting that different chromophores were involved in MAAs synthesis in Synechocystis sp. PCC 6803. It was also indicated that M-343 could be photochemically synthesized from some precursors. Under both UV and oxidation stresses, M-343 was more stable than dehydroxylusujirene and M-tau. Considering the reaction with H2O2, M-tau and dehydroxylusujirene might be potential antioxidants in reaction with physiological reactive oxygen species in vivo. In protection experiments, the MAAs exhibited efficient protective ability towards UV-B and H2O2 stresses, with maximal protection rates of 30% and 21.5%, respectively. These results indicate that the MAAs in Synechocystis sp. PCC 6803 act as both UV-screen and antioxidant.  相似文献   

16.
We found diaphototactic behavior (i.e. the cells swim perpendicularly with respect to the incident light) in a strain with colorless eyespot of a unicellular disk-shaped green flagellate Mesostigma viride. Lacking pigments completely in the eyespot, the screening effect in this strain was due only to the central part of the chloroplast whose cross section was thin. The diaphototaxis was most obvious when unilateral green stimulus light (520-580 nm) was given, whereas positive phototaxis appeared when given blue light (430-490 nm). The choice between diaphototaxis and (ordinary) phototaxis depended entirely on the transmission (%T) of the cell body against each wavelength of the stimulus: the green light penetrated well (%T > 90%), whereas the blue light was considerably shaded by the chloroplast (50% < %T < 70%). The fraction of positive phototactically behaving cells against each wavelength was in proportion to the front-to-back contrast value obtained at each individual wavelength. The fraction of diaphototaxis was inversely proportional to it. In addition, bilateral stimulus irradiations to wild-type cell with colored eyespot provided useful information about the principle of the diaphototactic steering.  相似文献   

17.
The centric diatom Pleurosira laevis is a large unicellular alga, in which ca 200 chloroplasts migrate toward the nuclear cytoplasm through the transvacuolar cytoplasmic strands in response to blue-light irradiation and, on the contrary, toward the cortical cytoplasm in response to green-light irradiation. We analyzed these light-induced chloroplast migrations using a scanning laser microbeam provided by a confocal microscope for intracellular irradiation. Spot irradiation of a blue laser microbeam induced rapid assemblage of chroloplasts into the nuclear cytoplasm regardless of the spot position and spot number. On the other hand, one or two spots of green laser microbeam induced chloroplast accumulation at the spots, although increasing spot numbers suppressed chloroplast accumulation at each spot. In our experimental condition, ca 1 min of blue-light irradiation was sufficient to stimulate movement, whereas green-light irradiation required uninterrupted and longer irradiation time (ca 15 min). Chloroplast assemblage induced by blue-light required extracellular Ca2+, and was inhibited by Ca2+ channel antagonists. Furthermore, higher efficiencies of chloroplast migration were obtained when a single beam spot was fragmented and scattered over wider area of plasma membrane. These observations suggested that blue-light induced a response at the plasma membrane, which subsequently activated Ca2+ permeable channels. This sequence of physiological events is identical to what was previously observed with chloroplast movement in response to mechanical stimulation. Furthermore, experiments with the cytoskeleton-disrupting agents, colchicine and cytochalasin D, indicated that blue-light-induced chloroplast movement required microtubules whereas the green-light-induced response to beam spot required actin filaments.  相似文献   

18.
《Tetrahedron: Asymmetry》2005,16(7):1403-1408
The reduction of the carbonyl group in 3-acetylisoxazole derivatives by algae (Cyanobacterium: Synechococcus elongatus PCC 7942 and Synechosystis sp. PCC 6803) and plant cells (Caragana chamlagu) gave the corresponding (S)-alcohols with high enantioselectivities.  相似文献   

19.
We compared the optical properties of the trimeric photosystem (PS) I complexes of the primordial cyanobacterium Gloeobacter violaceus PCC 7421 with those of Synechocystis sp. PCC 6803. Gloeobacter violaceus PS I showed (1) a shorter difference maximum of P700 by approximately 2 nm, (2) a smaller antenna size by approximately 10 chlorophyll (Chl) a molecules and (3) an absence of Red Chls. The energy transfer kinetics in the antennae at physiological temperatures were very similar between the two species due to the thermal equilibrium within the antenna; however, they differed at 77 K where energy transfer to Red Chls was clearly observed in Synechocystis sp. PCC 6803. Taken together with the lower P700 redox potential in G. violaceus by approximately 60 mV, we discuss differences in the optical properties of the PS I complexes with respect to the amino acid sequences of core proteins and further to evolution of cyanobacteria.  相似文献   

20.
Abstract— The phototactic response of cells of Cryptomonas sp. to stimulation with continuous or intermittent lateral light was determined by an individual cell method using photomicrography and videomicrography. The cells showed positive phototaxis under the conditions studied. The phototactic orientation of individual cells was induced most effectively by irradiation with light of 570 nm; blue light was less effective, and no orientation was found in red light. An intermittent stimulus regime with a long dark interval (250 ms) elicited a weaker phototactic orientation than did a regime with a short dark interval (63 ms) irrespective of the duration of light pulses (16, 250 and 1000 ms). The swimming rate was ca. 240 ums -1 and the rotation period ca. 450 ms in the dark, neither of which was greatly affected by stimulation with continuous or intermittent light. Neither step-up nor step-down photophobic responses were observed at the time of onset or removal of the light stimulus under the experimental conditions. The swimming direction of individual cells became gradually oriented toward the light source. Phototactic response was detectable within 4 s after the onset of light stimulation, reaching a saturation level after more than 30 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号