首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The bimetallic Ru-Pt/Al2O3 catalysts with an overall metal content of 1 wt. % and Pt: Ru weight ratios from 1: 3 to 3: 1 were studied. The catalytic activity for cyclohexane and benzene transformations, including hydrogenation, hydrogenolysis, and skeletal isomerization of the initial substrates and products of intermediate transformations, was studied at temperatures 180–350 °C and H2 pressures from 1.0 to 5.0 MPa. The maximum yield of n-hexane from cyclohexane and benzene was obtained on the catalysts with a ruthenium content of 0.75–1.0%, being ∼29–30 wt.% at 40% selectivity. The selectivity to form n-hexane decreases with an increase in the cyclohexane conversion and is almost independent of the composition of the Ru-Pt system. On the catalysts under study, benzene is converted to the same products but at temperatures by 60 °C lower as compared to cyclohexane conversion. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 633–637, April, 2006.  相似文献   

2.
New PdI and Pd0 carbonyl bromide complexes co-existing in the same crystal were synthesized and studied by X-ray diffraction analysis. The crystals consist of dimeric complex anions composed of the central Pd(μ-CO)2Pd fragment and four partially disordered terminal ligands (CO and Br). The complexes were characterized by IR, ESR, and X-ray photoelectron spectroscopy. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1349–1355, June, 2005.  相似文献   

3.
《中国化学》2017,35(9):1405-1410
Pd and Pdx Ni nanoparticles have been supported on reduced graphene oxide (Pd/rGO and Pdx Ni/rGO ) by using the microwave‐assisted heating method in glycol. The morphology, composition and electrochemical performance have been characterized by TEM , XRD , XPS and electrochemical methods. The XRD and XPS results show that there are no PdNi alloy particles formed in Pdx Ni/rGO and the composites exist mostly in the form of Pd0 and NiOOH species. The electrochemical results reveal that Pdx Ni/rGO synthesized from the feeding source of Pd and Ni with an atomic ratio of 4∶1 exhibits higher activity, better stability and smaller electron transfer resistance toward formic acid electro‐oxidation compared with commercial Pd/C, Pd/rGO and other Pdx Ni/rGO samples. The excellent electrocatalytic performance indicates that the addition of appropriate amount of Ni can greatly enhance the activity and stability of Pd catalysts for formic acid oxidation.  相似文献   

4.
The activity and selectivity of catalysts based on TsVM (an analog of ZSM-5), Beta, and La-H-Beta zoelites modified by Pt, Pt−Fe, and Pt−Ga were studied in the isomerization of C5 and C6 linear alkanes. The Pt/HTsVM, Pt/H-Beta, and Pt/La-H-Beta catalysts are efficient inn-pentane isomerization, whereas the Pt/H-Beta and Pt/La-H-Beta are most active inn-hexane isomerization. Nearly equilibirum isoparaffin yield at a selectivity of at least 95–96% is reached on these catalysts unlike other zeolite systems. The overall yield of 2,2-and 2,3-dimethylbutanes is 22 wt.%. The hexane isomers are not formed over the Pt/HTsVM catalyst due to the molecular-sieve properties of this type of zcolites. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya No. 11, pp. 1866–1869, November, 2000.  相似文献   

5.
Thermal decomposition of Ni(II), Pd(II), and Pt(II) complexes of N-pyrimidin-2ylthiourea (AllPmTu) have been studied by TG, DTG, and DTA and by electron impact (EI) mass spectra. The complexes have the molecular formulae as [Ni(AllPmTu)Cl2(H2O)], [Ni(AllPmTu)2Cl2(H2O)2], and [M(AllPmTu)Cl2], where M = PdII or PtII, and [Pt(AllPmTu)2]. The TG curves show that Ni(II) complexes decompose in three stages to yield NiO as a residue, while Pd(II) and Pt(II) decompose in two stages to yield MS residues. The initial mass losses correspond to elimination of allylamine for Pd(II) and Pt(II) complexes but, allyisothiocyanate for both Ni(II) complexes revealing that sulfur atom of thiourea part is involved in coordination to Pd(II) and Pt(II) but does not to Ni(II). Kinetic parameters (E #, n, ΔH #, ΔS #, ΔG #) of the decomposition stages are determined and correlated with bonding and structural properties of the complexes. The EI mass spectra of the complexes show fragments corresponding to the evolved and intermediate species.  相似文献   

6.

Abstract  

The intermetallic zinc compounds La3Pd4Zn4 and La3Pt4Zn4 were synthesized by induction melting of the elements in sealed tantalum tubes. The structures were refined from X-ray single-crystal diffractometer data: Gd3Cu4Ge4 type, Immm, a = 1,440.7(5), b = 743.6(2), c = 419.5(2) pm, wR 2 = 0.0511, 353 F 2 for La3Pd4Zn4; and a = 1,439.9(2), b = 748.1(1), c = 415.66(6) pm, wR 2 = 0.0558, 471 F 2 for La3Pt4Zn4 with 23 variables per refinement. The palladium (platinum) and zinc atoms build up a three-dimensional polyanionic [Pd4Zn4] (260–281 pm Pd–Zn) and [Pt4Zn4] (260–279 pm Pt–Zn) network in which the lanthanum atoms fill cavities of CN 14 (6 Pd/Pt + 8 Zn for La1) and CN 12 (6 Pd/Pt + 6 Zn for La2), respectively. The copper position of the Gd3Cu4Ge4 type is occupied by zinc and the two crystallographically independent germanium sites by palladium (platinum), a new coloring pattern for this structure type. Within the [Pd4Zn4] and [Pt4Zn4] the Pd2 and Pt2 atoms form Pd2–Pd2 (291 pm) and Pt2–Pt2 (296 pm) dumbbells. The structures of La3Pd4Zn4 and La3Pt4Zn4 are discussed with respect to the prototype Gd3Cu4Ge4 and the Zintl phase Sr3Li4Sb4. Temperature-dependent magnetic susceptibility measurements indicate diamagnetism for La3Pt4Zn4 and Pauli paramagnetism for La3Pd4Zn4.  相似文献   

7.
Pd(II) complexes and twelfth-series heteropoly acids (HPA) H9[PMo6V6O40] and H3[PMo12O40] supported on silica gel oxidize benzene and toluene at 95°C. The formation of methyldiphenylmethane in the oxidation of toluene on HPA/SiO2 and (PdCl2−HPA)/SiO2 catalysts, KIE>1 for the toluene/toluene-d8 pair, and greater rate for toluene than for benzene are in accord with a one-electron transfer mechanism. L. M. Litvinenko Institute of Physical Organic and Coal Chemistry, National Academy of Sciences of Ukraine, 70 R. Lyuksemburg ul., Donetsk 340114, Ukraine. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 35, No. 4, pp. 249–252, July–August, 1999.  相似文献   

8.
Pd/Ni bimetallic catalysts were prepared by replacement reactions, characterized by X-ray diffraction, CO chemisorption and H2 temperature-programmed desorption, and evaluated for hydrogenation of cyclohexene, styrene and acetone. The results show that Pd atoms are monolayer-dispersed on the Ni surface in these Pd/Ni catalysts. Consequently, Pd/Ni catalysts are much more active than Pd/Ni and Pd/c-Al2O3 with the same Pd loading prepared by the conventional impregnation method. __________ Translated from Chinese Journal of Catalysis, 2007, 28(8): 676–680 [译自: 催化学报]  相似文献   

9.
The behavior of the metals in the Pt−Pd/ZrO2 and Pt−Pd/SO4/ZrO2 systems was studied by DRIFT spectroscopy. After reduction of Pt−Pd/ZrO2 at 100 °C, the states of the metals are mainly Pt0 and Pd0 with a minor admixture of positively charged forms of Pt+ or Pd2+. An increase in the temperature of reduction leads to the formation of a bimetallic alloy. In the Pt−Pd/SO4/ZrO2 system, the effects of alloy formation and the interaction of the surface SO4 groups superimpose. At low reduction temperatures, the surface SO4 groups interact mainly with palladium. The influence of the surface sites on both supported metals increases with increasing reduction temperature. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1265–1270, July, 1999.  相似文献   

10.
We have established that the thermal stability of supported Pd/Al2O3 catalysts is increased after they are modified by rare earth oxides (La2O3, Ce2O3). We have observed the effect of thermal activation of an aluminopalladium catalyst modified by lanthanum oxide. This effect is apparent in the increase of the specific catalytic activity in the reaction of high-temperature reduction of nitrogen oxides by methane after heat treatment of the catalyst at 850 °C. We have used X-ray photoelectron spectroscopy (XPS) to show that the reason for the thermal activation effect is stabilization of palladium in the Pd1+ state. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 42, No. 1, pp. 44–48, January–February, 2006.  相似文献   

11.
Processes of electrochemical oxidation of Pd-rich Pd–Ni alloys in basic solutions were studied with the aim of electrochemical quartz crystal microbalance. Potentials of current peaks of Ni(II)/Ni(III) redox couple are independent of alloy composition. On the other hand, Ni(II)/Ni(III) redox couples formed on Pd–Ni alloys and Ni differ in respect to the structure of involved compounds and the processes of transport of the species accompanying oxidation/reduction reaction. The process of oxidation of Pd exhibits some differences between pure Pd and Pd–Ni alloys. This concerns mainly on participation of adsorbed water/OH in Pd oxidation process. In the initial stages of Pd oxidation, the source of oxygen is water/OH from the bulk of the solution. At this stage of the process, the product of Pd oxidation could be described as Pd(OH)2 or PdOH2O. With further progress in oxidation process, adsorbed species, water/OH, start to play a decisive role. Hydrous species, i.e. Pd(OH)2 or PdOH2O, are also reduced in the final stages of Pd(II) reduction process. This study is dedicated to the 70th birthday of Professor Oleg Petrii.  相似文献   

12.
The complex formation equilibria involving trans-diamminepalladium(II) chloride (PdII), 1,6-hexanediamine (HDA), and DNA constituents were investigated. The formation constant of all possible mononuclear and binuclear complexes were determined at 25 °C and 0.1 mol⋅L−1 NaNO3. The speciation diagrams of the binuclear complex of PdII–HDA–DNA reveal that these complexes predominate in the physiological pH range and the reaction of the binuclear complex PdII–HDA–PdII with DNA constituents is quite feasible.  相似文献   

13.
The gas phase hydrogenation (523-573 K) of phenol has been studied over 1 wt.% Pd/Al2O3 and 1 wt.% Ni/SiO2 catalysts doped with Group I and II promoter oxides. A direct correlation between catalytic activity and the charge transfer capacity of the promoters is presented where hydrogenation is favored by increasing electron donation from the promoter. The Pd catalysts generated cyclohexanone (selectivity > 97%) as the predominant product; selectivity was unaffected by the presence of the alkali or alkaline earth dopants. The Ni system exhibited appreciable hydrogenolysis behavior and charge transfer from the dopants limited the degree of hydrodeoxygenation to favor complete hydrogenation to cyclohexanol.  相似文献   

14.
Phases with with a NiAs-based structure have been studied in Au-Pd-Sn and Cu-Pd-Sn systems at 500°C using powder X-ray diffraction, X-ray structure analysis, and energy-dispersive X-ray microanalysis. In the Cu-Pd-Sn system, binary phases γ-Pd2Sn and Cu6Sn5 both having the Ni2In structure form a phase region (Pd,Cu)2 − x Sn, which preserves the Ni2In structure and is confined at 500°C by an L + (Pd,Cu)2 − x Sn + ɛ-Cu3Sn three-phase region. In the Au-Pd-Sn system, the δ-AuSn phase with the NiAs structure and γ-Pd2Sn with the Ni2In structure form a single phase region (Pd,Au)2 − x Sn, which is bounded at 500°C by an L + (Pd,Au)2 − x Sn two-phase region; the structure of the ternary phase changes from Ni2In with incompletely filled trigonal-prismatic interstices to NiAs. The Pd20Sn13 phase, which crystallizes in the GaGe2Ni4 type structure, penetrates into both ternary systems up to ∼5 at % of the third component. The solubilities of copper and gold in PdSn and Pd2Sn phases, which have structures based on orthorhombically distorted NiAs and Ni2In lattices, respectively, do not exceed 2 at %.  相似文献   

15.
In catalytic two-step n-butene oxidation with dioxygen to methyl ethyl ketone, the first step is the oxidation of n-C4H8 with an aqueous solution of Mo-V-P heteropoly acid in the presence of Pd(II) complexes. The kinetics of n-butene oxidation with solutions of H7PV4Mo8O40 (HPA-4) in the presence of the Pd(II) dipicolinate complex (H2O)PdII(dipic) (I), where dipic2− is the tridentate ligand 2,6-NC5H3(COO)2, is studied. Calculation shows that, at the ratio dipic2−: Pd(II) = 1: 1, the ligand decreases the redox potential of the Pd(II)/Pdmet system from 0.92 to 0.73–0.77, due to which Pd(II) is stabilized in reduced solutions of HPA-4. The reaction is first-order with respect to n-C4H8. Its order with respect to Pd(II) is slightly below unity, and its order with respect to HPA-4 is relatively low (∼0.63). The activation energy of but-1-ene oxidation in the temperature range from 40 to 80°C is 49.0 kJ/mol, and that of the oxidation of but-2-ene is 55.6 kJ/mol. The mechanism of the reaction involving the cis-diaqua complex [(H2O)2PdII(Hdipic)]+, which forms reversibly from complex I, is proposed. The reaction rate is shown to increase with an increase in the HPA-4 concentration due to an increase in the acidity of the solution.  相似文献   

16.
The active state of palladium for NO reduction with methane (CH4-SCR) was investigated by comparing the catalytic activity of Pd/H-ZSM-5 with that of PdO/SiO2. High catalytic activity for CH4-SCR was given by Pd/H-ZSM-5 in the temperature range of 300–500 °C. PdO/SiO2 catalyzed the reaction between NO2 and CH4 in the absence of oxygen, which retarded the reaction by consuming CH4 in combustion. CH4 combustion occurred on either zeolite-supported or silica-supported catalyst, while NO preferentially retarded the combustion on Pd/H-ZSM-5. NO was found to be chemisorbed on the palladium sites in zeolite, while it was hardly chemisorbed on PdO/SiO2. NaCl titration showed that the palladium species in zeolite are Pd2+ cations content, on which NO is strongly chemisorbed resulting in high selectivity for CH4-SCR.  相似文献   

17.
Cyclic voltammetry (CV), rotating disk electrode voltammetry (RDE) and bulk electrolysis were used to investigate the electrochemical oxidation of the title cluster in acetonitrile (CH3CN). Two irreversible 2-electron oxidation processes occur at +0.95 V and +1.15 V vs. SCE. Bulk electrolysis demonstrates that the d9–d9 Pd2(dppm)2(NCCH3) 2 2+ 4 complex is generated among the first intermediates, and the d8 Pd(dppm)(NCCH3) 2 2+ 3 is formed as the final product. The intermediacy of “Pd3(dppm)3(CO)4+” and “Pd3(dppm) 3 4+ ” is suspected but not confirmed. This oxidation process exhibits a close resemblance to the photo oxidative reactivity of the title cluster in the presence of chlorocarbons (R–Cl) for which the sole observed product is Pd(dppm)Cl2.This paper is dedicated to Professor Brian Johnson on the occasion of his retirement.  相似文献   

18.
The Ni/SiO2, Ni/ZrO2, and Ni/SO4/ZrO2 systems were studied by diffuse-reflectance IR spectroscopy using CO as a probe molecule. The Ni/SiO2 and Ni/ZrO2 systems are similar in properties, and the state of nickel in the Ni/ZrO2 system is determined by the specific surface area. In the Ni/SO4/ZrO2 system, the surface sulfur compounds affect substantially the state of nickel: Niδ+ species with a partial positive charge are formed due to the strong electron-acceptor properties of the sulfur compounds. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 409–413, March, 1998.  相似文献   

19.
Liquid phase hydrodechlorination of chlorobenzene, 1,2,4-trichlorobenzene, hexachlorobenzene, polychlorinated biphenyls in the ethanol-containing solution, on Me0/C (where Me0-Pd, Ni or bimetallic Ni−Pd; C-carbon material “Sibunit”) with H2 have been studied at 20–70°C and PH 2=1–50 atm. Pd and Pd-promoted Ni catalysts exhibit the highest activity. Kinetic studies show hydrodechlorination of these compounds to be a consecutive reaction, which under the conditions described may produce less chlorinated compounds.  相似文献   

20.
Nucleophilic substitution of Pd(RaaiR′)Cl2 [(RaaiR′ = 1-alkyl-2-(arylazo)imidazole, p-R-C6H4-N=N-C3H2NN-1-R′; where R = H(a)/ Me(b)/ Cl(c) and R′ = Et(1)/Bz(2)] with 2-Mercaptopyridine (2-SH-Py) in acetonitrile (MeCN) at 298 K, to form [Pd2(2-S-Py)4], has been studied spectrophotometrically under pseudo-first-order conditions and the analyses support the nucleophilic association path. The reaction follows the rate law, Rate = {k 0 + k [2-SH-Py] 0 2 }[Pd(RaaiR′)Cl2]: first order in Pd(RaaiR′)Cl2 and second order in 2-SH-Py. The rate of the reaction follows the order: Pd(RaaiEt)Cl2 (1) < Pd(RaaiBz)Cl2 (2) and Pd(MeaaiR′)Cl2 (b) < Pd(HaaiR′)Cl2 (a) < Pd(ClaaiR′)Cl2 (c). External addition of Cl (LiCl) and HCl suppresses the rate (Rate ∝ 1/[Cl]0 & ∝1/[HCl]0). The reactions have been studied at different temperatures (293–308 K) and activation parameters (Δ H° and Δ S°) of the reactions were calculated from the Eyring plot and support the proposed mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号