首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human observers were asked to judge whether or not two sequences of eight or more tones had the same serial pattern of frequencies. The temporal envelopes of the sequences were manipulated by randomly varying the tone durations or intertone gaps. In the correlated condition, the temporal envelopes of the sequences were varied across trials; the two sequences within each trial had the same temporal envelope. In the uncorrelated condition, the temporal envelopes were varied both across and within trials; every sequence had a unique temporal pattern. Performance in the uncorrelated condition decreased with increased variability in the temporal envelope. Performance in the correlated condition was independent of temporal variability, but decreased with increases in the time interval between the onsets of the two sequences. This pattern of results is consistent with an extension of a model of auditory discrimination developed by Durlach and Braida [J. Acoust. Soc. Am. 46, 372-383 (1969)], in which two processing modes are postulated: a trace mode and a context mode. When the tonal sequences had unique temporal patterns, context mode processing was dominant; when the sequences had identical temporal patterns, trace mode processing was preferred. The effect of variables such as the number of tones, the tone duration, the time gap between tones, and the time interval between sequences was consistent with the predictions of the discrimination model.  相似文献   

2.
This paper extends previous research on listeners' abilities to discriminate the details of brief tonal components occurring within sequential auditory patterns (Watson et al., 1975, 1976). Specifically, the ability to discriminate increments in the duration delta t of tonal components was examined. Stimuli consisted of sequences of ten sinusoidal tones: a 40-ms test tone to which delta t was added, plus nine context tones with individual durations fixed at 40 ms or varying between 20 and 140 ms. The level of stimulus uncertainty was varied from high (any of 20 test tones occurring in any of nine factorial contexts), through medium (any of 20 test tones occurring in ten contexts), to minimal levels (one test tone occurring in a single context). The ability to discriminate delta t depended strongly on the level of stimulus uncertainty, and on the listener's experience with the tonal context. Asymptotic thresholds under minimal uncertainty approached 4-6 ms, or 15% of the duration of the test tones; under high uncertainty, they approached 40 ms, or 10% of the total duration of the tonal sequence. Initial thresholds exhibited by inexperienced listeners are two-to-four times greater than the asymptotic thresholds achieved after considerable training (20,000-30,000 trials). Isochronous sequences, with context tones of uniform, 40-ms duration, yield lower thresholds than those with components of varying duration. The frequency and temporal position of the test tones had only minor effects on temporal discrimination. It is proposed that a major determinant of the ability to discriminate the duration of components of sequential patterns is the listener's knowledge about "what to listen for and where." Reduced stimulus uncertainty and extensive practice increase the precision of this knowledge, and result in high-resolution discrimination performance. Increased uncertainty, limited practice, or both, would allow only discrimination of gross changes in the temporal or spectral structure of the sequential patterns.  相似文献   

3.
The effect of tone duration and presentation rate on the discrimination of the temporal order of the middle two tones of a four-tone sequence was investigated in young normal-hearing (YNH) and older hearing-impaired (OHI) listeners. The frequencies and presentation level of the tone sequences were selected to minimize the effect of hearing loss on the performance of the OHI listeners. Tone durations varied from 20 to 400 ms and presentation rates from 2.5 to 25 toness. Two experiments were conducted with anisochronous (nonuniform duration and rate across entire sequence) and isochronous (uniform rate and duration) sequences, respectively. For the YNH listeners, performance for both isochronous and anisochronous sequences was determined primarily by presentation rate such that performance decreased at rates faster than 5 toness. For anisochronous tone sequences alone, the effects of rate were more pronounced at short tone durations. For the OHI listeners, both presentation rate and tone duration had an impact on performance for both isochronous and anisochronous sequences such that performance decreased as rate increased above 5 toness or duration decreased below 40 ms. Temporal masking was offered as an explanation for the interaction of short durations and fast rates on temporal order discrimination for the anisochronous sequences.  相似文献   

4.
In three experiments, listeners' abilities to detect changes in randomly generated tonal sequences were determined for sequences or "patterns" ranging in total duration from 62.5 ms to 2 s. Experiment 1 utilized an adaptive-tracking procedure, with n, the number of pattern components, as the dependent variable, and included a variety of spectral and temporal discrimination tasks with isochronous patterns. When the to-be-detected change was the only variation on a given dimension (e.g., the presence or location of a brief pause), patterns were discriminable when the absolute duration of the changed element, or pause, exceeded a critical value. However, when each pattern component varied on the dimension of the to-be-detected change (e.g., frequency), discriminability was strongly related to the number of tones in the pattern, and only weakly to the durations of either the target components or the total pattern. This dependence of discrimination performance on n was also demonstrated with anisochronous patterns in experiment 2. Experiment 3 revealed the same dependence of performance on the number of components per pattern as did experiments 1 and 2, but with delta f/f as the dependent variable, rather than n. The number of pattern components and the proportional duration of the target components, relative to total pattern duration, were confounded in these experiments. Additional research is therefore required to determine whether number or proportional target-tone duration is the primary determinant of pattern discriminability.  相似文献   

5.
The experiments examined age-related changes in temporal sensitivity to increments in the interonset intervals (IOI) of components in tonal sequences. Discrimination was examined using reference sequences consisting of five 50-ms tones separated by silent intervals; tone frequencies were either fixed at 4 kHz or varied within a 2-4-kHz range to produce spectrally complex patterns. The tonal IOIs within the reference sequences were either equal (200 or 600 ms) or varied individually with an average value of 200 or 600 ms to produce temporally complex patterns. The difference limen (DL) for increments of IOI was measured. Comparison sequences featured either equal increments in all tonal IOIs or increments in a single target IOI, with the sequential location of the target changing randomly across trials. Four groups of younger and older adults with and without sensorineural hearing loss participated. Results indicated that DLs for uniform changes of sequence rate were smaller than DLs for single target intervals, with the largest DLs observed for single targets embedded within temporally complex sequences. Older listeners performed more poorly than younger listeners in all conditions, but the largest age-related differences were observed for temporally complex stimulus conditions. No systematic effects of hearing loss were observed.  相似文献   

6.
The experiment compared the pitches of complex tones consisting of unresolved harmonics. The fundamental frequency (F0) of the tones was 250 Hz and the harmonics were bandpass filtered between 5500 and 7500 Hz. Two 20-ms complex-tone bursts were presented, separated by a brief gap. The gap was an integer number of periods of the waveform: 0, 4, or 8 ms. The envelope phase of the second tone burst was shifted, such that the interpulse interval (IPI) across the gap was reduced or increased by 0.25 or 0.75 periods (1 or 3 ms). A "no shift" control was also included, where the IPI was held at an integer number of periods. Pitch matches were obtained by varying the F0 of a comparison tone with the same temporal parameters as the standard but without the shift. Relative to the no-shift control, the variations in IPI produced substantial pitch shifts when there was no gap between the bursts, but little effect was seen for gaps of 4 or 8 ms. However, for some conditions with the same IPI in the shifted interval, an increase in the IPI of the comparison interval from 4 to 8 ms (gap increased from 0 to 4 ms) changed the pitch match. The presence of a pitch shift suggests that the pitch mechanism is integrating information across the two tone bursts. It is argued that the results are consistent with a pitch mechanism employing a long integration time for continuous stimuli that is reset in response to temporal discontinuities. For a 250-Hz F0, an 8-ms IPI may be sufficient for resetting. Pitch models based on a spectral analysis of the simulated neural spike train, on an autocorrelation of the spike train, and on the mean rate of pitch pulses, all failed to account for the observed pitch matches.  相似文献   

7.
This study examined whether increasing the similarity between informational maskers and signals would increase the amount of masking obtained in a nonspeech pattern identification task. The signals were contiguous sequences of pure-tone bursts arranged in six narrow-band spectro-temporal patterns. The informational maskers were sequences of multitone bursts played synchronously with the signal tones. The listener's task was to identify the patterns in a 1-interval 6-alternative forced-choice procedure. Three types of multitone maskers were generated according to different randomization rules. For the least signal-like informational masker, the components in each multitone burst were chosen at random within the frequency range of 200-6500 Hz, excluding a "protected region" around the signal frequencies. For the intermediate masker, the frequency components in the first burst were chosen quasirandomly, but the components in successive bursts were constrained to fall in narrow frequency bands around the frequencies of the components in the initial burst. Within the narrow bands the frequencies were randomized. This masker was considered to be more similar to the signal patterns because it consisted of a set of narrow-band sequences any one of which might be mistaken for a signal pattern. The most signal-like masker was similar to the intermediate masker in that it consisted of a set of synchronously played narrow-band sequences, but the variation in frequency within each sequence was sinusoidal, completing roughly one period in a sequence. This masker consisted of discernible patterns but not patterns that were part of the set of signals. In addition, masking produced by Gaussian noise bursts--thought to produce primarily peripherally based "energetic masking"--was measured and compared to the informational masking results. For the three informational maskers, more masking was produced by the maskers comprised of narrow-band sequences than for the masker in which the frequencies were not constrained to narrow bands. Also, the slopes of the performance-level functions for the three informational maskers were much shallower than for the Gaussian noise masker or for no masker. The findings provided qualified support for the hypothesis that increasing the similarity between signals and maskers, or parts of the maskers, causes greater informational masking. However, it is also possible that the greater masking was a consequence of increasing the number of perceptual "streams" that had to be evaluated by the listener.  相似文献   

8.
Performance on 19 auditory discrimination and identification tasks was measured for 340 listeners with normal hearing. Test stimuli included single tones, sequences of tones, amplitude-modulated and rippled noise, temporal gaps, speech, and environmental sounds. Principal components analysis and structural equation modeling of the data support the existence of a general auditory ability and four specific auditory abilities. The specific abilities are (1) loudness and duration (overall energy) discrimination; (2) sensitivity to temporal envelope variation; (3) identification of highly familiar sounds (speech and nonspeech); and (4) discrimination of unfamiliar simple and complex spectral and temporal patterns. Examination of Scholastic Aptitude Test (SAT) scores for a large subset of the population revealed little or no association between general or specific auditory abilities and general intellectual ability. The findings provide a basis for research to further specify the nature of the auditory abilities. Of particular interest are results suggestive of a familiar sound recognition (FSR) ability, apparently specialized for sound recognition on the basis of limited or distorted information. This FSR ability is independent of normal variation in both spectral-temporal acuity and of general intellectual ability.  相似文献   

9.
Level dominance refers to the effect where attention is automatically directed to the loudest part of an auditory display. In a sample discrimination task, the frequencies of five 50 ms tones were sampled from normal distributions with means of 1000 and 1100 Hz and presented sequentially, with the tones alternating in intensity. Observers decide from which distribution the sample was drawn. The informativeness of the even numbered tones (d' = 2) was greater than the informativeness of the odd numbered tones (d' = 1). Estimates of decision weights and performance levels (d') show that when the more informative tones were less intense, observers attended to the louder tones rather than the more informative tones. This effect extends well beyond the temporal limits expected from forward masking studies.  相似文献   

10.
Experiment 1 examined detection and discrimination of monaural four-tone sequences composed of 400-, 500-, and 625-Hz sinusoids. In the baseline conditions, the masker was monaural composed of 25-Hz-wide bands of random noise centered on 320, 400, 500, 625, and 781 Hz. In the binaural masking release conditions, the noise was presented diotically. In the monaural masking release conditions, the noise was presented to the same ear as the signal, but it was comodulated. Tones had half-amplitude durations of 30, 60, or 150 ms. There was no delay between successive tones, so the rate of frequency change depended on tone duration. Listeners discriminated between sequences composed of 500-400-625-500 Hz and 500-625-400-500 Hz. Discrimination results were poor for rapid sequences in both monaural and binaural masking release conditions relative to baseline conditions. Results from experiment 2 indicated that poor discrimination for rapid sequences could also occur in the baseline conditions, provided that the frequency separation among tonal components was small. Sluggish processing in the present paradigm was not restricted to conditions relying on binaural cues. It is argued that sluggishness may reflect a long temporal window in monaural and binaural masking release conditions or an interaction between poor cue quality and task difficulty.  相似文献   

11.
Temporal integration of loudness of 1 kHz tones with 5 and 200 ms durations was assessed in four subjects using two loudness measurement procedures: categorical loudness scaling (CLS) and loudness matching. CLS provides a reliable and efficient procedure for collecting data on the temporal integration of loudness and previously reported nonmonotonic behavior observed at mid-sound pressure level levels is replicated with this procedure. Stimuli that are assigned to the same category are effectively matched in loudness, allowing the measurement of temporal integration with CLS without curve-fitting, interpolation, or assumptions concerning the form of the loudness growth function.  相似文献   

12.
The effect on gap detectability of varying noise fall time (FT) and rise time (RT) of the gap boundary ramps was examined in mice using reflex modification audiometry, measuring inhibition of acoustic startle reflexes by variously shaped gaps just preceding reflex expression. In experiment 1 (n = 12) inhibition increased up to near-asymptotic values with longer FT (0, 1, 2, 3, 5, or 10 ms) and QT (quiet time, 0 to 13 ms), with a 2:1 trade-off between FT and QT. In experiment 2 (n = 24) inhibition increased for any RT above 0 ms (2, 3, 5, or 7 ms) if QT= 1 ms, but diminished with increased RT when QT = 3 or 8 ms. Enhanced detectability for subthreshold gaps by longer ramps results from their extending the apparent gap duration. The negative effect of increased RT for threshold gaps suggests the importance for gap detection of the stronger neural responses to sharp edges at the end of the gap shown previously in the mouse inferior colliculus. These effects are specific to gaps: inhibition for fixed (70-dB SPL) or varied level pulses (30 to 60 dB) was unaffected by varying the ramped edges (experiments 3 and 4, n = 9).  相似文献   

13.
A principle of auditory perception that governs the detectability of changes in components in unfamiliar sequences of tones is demonstrated in four experiments. The proportion-of-the-total-duration (PTD) rule can be stated as follows: Each individual component of an unfamiliar sequence of tones is resolved with an accuracy that is a function of its proportion of the total duration of the sequence or "pattern." An adaptive-tracking frequency-discrimination task was used in all experiments. Experiment 1 demonstrated that the PTD rule holds over a wide range of total pattern durations, numbers of components, and component durations. Experiment 2 demonstrated that the PTD rule governs discrimination performance despite variation in the relative durations of context and target tones. Experiment 3, using a variable temporal position for the target, confirmed that the PTD effect does not require that a listener be able to anticipate the temporal location of the target tone. Experiment 4, using two target tones, showed that the PTD rules applies to the proportional duration of individual components within patterns and not to the total proportional duration of nonadjacent components within the pattern. These findings are incompatible with performance limitations based on a fixed-duration short-term memory capacity and with versions of informational limitations in which the amount of information in a pattern varies either with the number of components or with the total pattern duration. The PTD rule appears to reflect the way listeners distribute their attention when presented with unfamiliar complex sounds that have no structural properties (other than proportional duration) that significantly increase the salience of individual components.  相似文献   

14.
Detection thresholds for temporal gaps between markers of dissimilar frequency are usually elevated with respect to thresholds for gaps between markers of similar frequency. Because gaps between markers of dissimilar frequency represent both a spectrally based perceptual discontinuity as well as a temporal discontinuity, it is not clear what factors underlie the threshold elevation. This study sought to examine the effects of perceptual dissimilarities on gap detection. The first experiment measured gap detection for configurations of narrow-band gap markers comprised of pure tones, frequency-modulated tones, and amplitude-modulated tones. The results showed that gap thresholds for frequency-disparate pure-tone markers were elevated with respect to isofrequency tonal markers, but that perceptual discontinuities between markers restricted to the same frequency region did not uniformly elevate threshold. The second experiment measured gap detection for configurations of markers where the leading and trailing markers could differ along the dimensions of bandwidth, duration, and pitch. The results showed that, in most cases, gap detection deteriorated when the bandwidth of the two markers differed, even when the spectral content of the narrower-band marker was completely subsumed by the spectral content of the wider-band marker. This finding suggests that gap detection is sensitive to spectral dissimilarity between markers in addition to spectral discontinuity. The effects of marker duration depended on the marker bandwidth. Pitch differences across spectrally similar markers had no effect.  相似文献   

15.
The effect of apparent spatial location on sequential streaming was investigated by manipulating interaural time differences (ITDs). The degree of obligatory stream segregation was inferred indirectly from the threshold for detecting a rhythmic irregularity in an otherwise isochronous sequence of interleaved "A" and "B" tones. Stimuli were bandpass-filtered harmonic complexes with a 100-Hz fundamental. The A and B tones had equal but opposite ITDs of 0, 0.25, 0.5, 1, or 2 ms and had the same or different passbands. The passband ranges were 1250-2500 Hz and 1768-3536 Hz in experiment 1, and 353-707 Hz and 500-1000 Hz in experiment 2. In both experiments, increases in ITD led to increases in threshold, mainly when the passbands of A and B were the same. The effects were largest for ITDs above 0.5 ms, for which rhythmic irregularities in the timing of the A or B tones alone may have disrupted performance. It is concluded that the differences in apparent spatial location produced by ITD have only weak effects on obligatory streaming.  相似文献   

16.
The experiments examined the ability of younger and older listeners to identify the temporal order of sounds presented in tonal sequences. The stimuli were three-tone sequences that spanned two-octave frequency range, and listeners identified random permutations of tone order using labels of relative pitch. Some of the sequences featured uniform timing characteristics, and the sequence duty cycle was varied across conditions to examine the relative influence of tonal durations and intertone interval on recognition performance across a range of sequence presentation rates. Other stimulus sequences featured nonuniform timing with unequal tone durations and intertone intervals. The listeners were groups of younger and older persons with or without hearing loss. Results indicated that temporal order recognition was influenced primarily by sequence presentation rate, independent of tonal duration, tonal interval spacing, or sequence timing characteristics. The performance of older listeners was poorer than younger listeners, but the age-related recognition differences were independent of sequence presentation rate. There were no consistent effects of hearing loss on temporal ordering performance.  相似文献   

17.
Voice onset time (VOT) is a temporal cue that can distinguish consonants such as /d/ from /t/. It has previously been shown that neurons' responses to the onset of voicing are strongly dependent on their static spectral sensitivity. This study examined the relation between temporal resolution, determined from responses to sinusoidally amplitude-modulated (SAM) tones, and responses to syllables with different VOTs. Responses to syllables and SAM tones were obtained from low-frequency neurons in the inferior colliculus (IC) of the chinchilla. VOT and modulation period varied from 10 to 70 ms in 10-ms steps, and discharge rates elicited by stimuli whose amplitude envelopes were modulated over the same temporal interval were compared. Neurons that respond preferentially to syllables with particular VOTs might be expected to respond best to the SAM tones with comparable modulation periods. However, no consistent agreement between responses to VOT syllables and to SAM tones was obtained. These results confirm the previous suggestion that IC neurons' selectivity for VOT is determined by spectral rather than temporal sensitivity.  相似文献   

18.
To assess temporal integration in normal hearing, cochlear impairment, and impairment simulated by masking, absolute thresholds for tones were measured as a function of duration. Durations ranged from 500 ms down to 15 ms at 0.25 kHz, 8 ms at 1 kHz, and 2 ms at 4 and 14 kHz. An adaptive 2I, 2AFC procedure with feedback was used. On each trial, two 500-ms observation intervals, marked by lights, were presented with an interstimulus interval of 250 ms. The monaural signal was presented in the temporal center of one observation interval. The results for five normal and six impaired listeners show: (1) normal listeners' thresholds decrease by about 8 to 10 dB per decade of duration, as expected; (2) listeners with cochlear impairments generally show less temporal integration than normal listeners; and (3) listeners with impairments simulated using masking noise generally show the same amount of temporal integration as normal listeners tested in the quiet. The difference between real and simulated impairments indicates that the reduced temporal integration observed in impaired listeners probably is not due to splatter of energy to frequency regions where thresholds are low, but reflects reduced temporal integration per se.  相似文献   

19.
The purpose of this study was to compare the role of frequency selectivity in measures of auditory and vibrotactile temporal resolution. In the first experiment, temporal modulation transfer functions for a sinusoidally amplitude modulated (SAM) 250-Hz carrier revealed auditory modulation thresholds significantly lower than corresponding vibrotactile modulation thresholds at SAM frequencies greater than or equal to 100 Hz. In the second experiment, auditory and vibrotactile gap detection thresholds were measured by presenting silent gaps bounded by markers of the same or different frequency. The marker frequency F1 = 250 Hz preceded the silent gap and marker frequencies after the silent gap included F2 = 250, 255, 263, 310, and 325 Hz. Auditory gap detection thresholds were lower than corresponding vibrotactile thresholds for F2 markers less than or equal to 263 Hz, but were greater than the corresponding vibrotactile gap detection thresholds for F2 markers greater than or equal to 310 Hz. When the auditory gap detection thresholds were transformed into filter attenuation values, the results were modeled well by a constant-percentage (10%) bandwidth filter centered on F1. The vibrotactile gap detection thresholds, however, were independent of marker frequency separation. In a third experiment, auditory and vibrotactile rate difference limens (RDLs) were measured for a 250-Hz carrier at SAM rates less than or equal to 100 Hz. Auditory RDLs were lower than corresponding vibrotactile RDLs for standard rates greater than 10 Hz. Combination tones may have confounded auditory performance for standard rates of 80 and 100 Hz. The results from these experiments revealed that frequency selectivity influences auditory measures of temporal resolution, but there was no evidence of frequency selectivity affecting vibrotactile temporal resolution.  相似文献   

20.
The auditory system continuously parses the acoustic environment into auditory objects, usually representing separate sound sources. Sound sources typically show characteristic emission patterns. These regular temporal sound patterns are possible cues for distinguishing sound sources. The present study was designed to test whether regular patterns are used as cues for source distinction and to specify the role that detecting these regularities may play in the process of auditory stream segregation. Participants were presented with tone sequences, and they were asked to continuously indicate whether they perceived the tones in terms of a single coherent sequence of sounds (integrated) or as two concurrent sound streams (segregated). Unknown to the participant, in some stimulus conditions, regular patterns were present in one or both putative streams. In all stimulus conditions, participants' perception switched back and forth between the two sound organizations. Importantly, regular patterns occurring in either one or both streams prolonged the mean duration of two-stream percepts, whereas the duration of one-stream percepts was unaffected. These results suggest that temporal regularities are utilized in auditory scene analysis. It appears that the role of this cue lies in stabilizing streams once they have been formed on the basis of simpler acoustic cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号