首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel cationic hydrophilic interaction monolithic stationary phase based on the chemical modification of carboxymethyl chitosan (CMCH) to the monolithic silica skeleton using carbodiimide as an activation reagent was prepared for performing capillary liquid chromatography. The amino and hydroxy moieties of CMCH functioned as both the ion-exchange sites and polar providers. The performance of the column was studied by the separation of polar acidic compounds. The chitosan functionalized monolithic silica column showed good selectivity for nucleosides, nucleotides, aromatic acids and aliphatic acids. The mechanism for the separation of these compounds was also studied. The results showed that these compounds were separated primarily based on the hydrophilic interaction mechanism.  相似文献   

2.
The development of mixed-mode stationary phase to achieve multiple separation capabilities in one column is very important for high performance liquid chromatography. In this paper, a new specific stationary phase based on grafting N-methylimidazolium to a monolithic silica column was successfully prepared for performing capillary liquid chromatography. The characteristics of the column were evaluated by the separation of different types of compounds including inorganic anions, aromatic acids, nucleotides, polycyclic aromatic hydrocarbons, alkylbenzenes, and phenols. The mechanisms for the separation of these compounds were investigated and appeared to involve the mixed interactions including anion-exchange, hydrophilic, π-π, dipole-dipole, and hydrophobic interactions.  相似文献   

3.
Y Li  Y Chen  K Wang  L Nie  S Yao 《Electrophoresis》2012,33(13):2005-2011
One-pot synthesis of porous polymer monolith decorated with N-methylimidazolium in a capillary was described. The polymer matrix was synthesized by in situ copolymerization and quaterization of 3-chloro-2-hydroxylpropyl methacrylate (CHPMA), ethylene dimethacrylate (EDMA), and N-methylimidazole (N-MIz). The influencing factors including amount of cross-linkers, composition of porogenic solvents, and polymerization temperature on the formation of the monolithic column were investigated. The monolithic column exhibited high column efficiency for thiourea, up to 135 000 plates per meter, and phenylmethanol, up to 102 000 plates per meter. Different types of compounds including alkylbenzenes, phenols, and inorganic anions were successfully baseline separated by capillary electrochromatography (CEC). The separation of theses analytes on the column indicated typical reversed-phase and anion-exchange chromatographic retention mechanism.  相似文献   

4.
Liu Z  Wu R  Zou H 《Electrophoresis》2002,23(22-23):3954-3972
This review surveys the recent progress in the adsorbed stationary phases for capillary electrochromatography (CEC). Adsorption-based methods for preparation of stationary phase are novel approaches in CEC, which allow rapid and facile preparing stationary phases with desirable selectivity onto an open-tubular fused-silica capillary, a bare-silica or ion-exchange packed column or a monolithic silica or polymer column. A variety of adsorbing agents have been developed as adsorbed stationary phases, including ionic long-chain surfactant, protein, peptide, amino acid, charged cyclodextrin (CD), basic compound, aliphatic ionene, and ion-exchange latex particle. The adsorbed stationary phases have been applied to separation of neutral, basic and acidic organic compounds, inorganic anions and enantiomers. They have also been applied to on-line sample concentration, fast separation and study of the competitive binding of enantiomers with protein.  相似文献   

5.
《Analytical letters》2012,45(16):2377-2388
Capillary electrochromatography (CEC) is important for applications in enantiomer separation. The problems associated with column fabrication bring a challenge in developing monoliths with ease of preparation, robustness of separation, enhanced mass transfer, and lower pressure drop. In this research, the covalent binding of proteins on to a monolithic matrix was investigated to overcome the drawback of loss and/or denaturing of the biomolecules from physical adsorption and encapsulation method. A chitosan/silica hybrid monolith was prepared and a protein, bovine serum albumin, was covalently immobilized on the column. The prepared monolith was evaluated using the enantioseparation of D,L-tryptophan by CEC. It was found that separation of tryptophan enantiomers with a resolution of 2.44 was achieved by using 20 mmol L?1 phosphate buffer at pH 7.5. A higher chitosan concentration was also proven to be of possible use in the synthesis with the aid of acetic acid as the solvent. The much shorter retention time and increased separation ability demonstrate the advantages of capillary column under investigation.  相似文献   

6.
A new-type of sol-gel/organic hybrid composite material using gelatin or chitosan with tetramethoxysilane was developed for the bovine serum albumin (BSA)-encapsulated monolithic column for capillary electrochromatography (CEC). The composite monolith was used to immobilize BSA in a fused-silica capillary. The addition of gelatin and chitosan to the alkoxysilane enabled the enantioseparation of Trp. A very small amount of these polymers were effective for the enantioseparation. Especially, the monolithic column prepared from chitosan with tetramethoxysilane showed a high enantioselectivity for Trp enantiomers and the value (alpha' = t2/t1, t1: fast eluted enantiomer, t2: second eluted enantiomer) reached 1.15 on CEC mode. Furthermore, the composite materials exhibited a higher stability compared to the silica sol-gel column. These results showed that the sol-gel/organic hybrid composite was useful as a monolithic matrix for the BSA-encapsulated column for CEC.  相似文献   

7.
离子交换色谱法同时测定啤酒中有机酸和无机阴离子   总被引:13,自引:2,他引:13  
建立了用亲水性阴离子交换分离柱,KOH为淋洗液等浓度泵作梯度淋洗,电导检测,同时分离和检测16种无机阴离子和低分子量有机酸的离子色谱法。方法对所测无机阴离子和有机酸检出限在9.3~32μg/L之间;线性范围均在2个数量级以上;回收率在90.2%~107.2%之间。方法用于啤酒样品的分析,结果满意,样品的RSD小于5.3%(n=7)。  相似文献   

8.
Open-tubular capillaries have been joined together for use in on-column ion-exchange preconcentration of anions by capillary electrochromatography (CEC) with elution by a transient isotachophoretic gradient. This involved the coupling of a preconcentration capillary and a separation capillary using a PTFE sleeve. Such coupling allowed precise lengths of differently coated capillaries to be joined in-line to form a single multi-mode column. The different segments could be tailored to optimize a separation by either altering the length of each segment to precisely manipulate the amount of stationary phase present or by changing the internal diameter of each segment to alter the phase ratio in the chromatographic column without affecting the path length for UV detection. In this work, a segmented in-line capillary was used in conjunction with a fluoride-octanesulfonate discontinuous electrolyte system to increase the number of anions that could be preconcentrated and separated. Quaternary ammonium functionalised latex particles were used for creating the preconcentration segment and the separation segment was coated with poly(diallyldimethylammonium chloride). This allowed the detection of trace anions in drinking water and in situ sampling of river water for the analysis of trace inorganic anions. The repeatability of producing the quaternary ammonium functionalized latex-coated segments was assessed and the effect of segmentation on peak efficiency was investigated.  相似文献   

9.
A novel method was developed for the preparation of highly efficient anion- and cation-exchange microHPLC columns using an on-column polymerization of methacrylates having amine or sulfonic acid functional groups onto monolithic silica capillary columns modified with 3-methacryloxypropyltriethoxysilane as the anchor groups. The chromatographic evaluation of the columns using nucleic acids, nucleotides, and inorganic anions as samples showed the characteristics of the ion-exchange-type stationary phases. These columns exhibited higher separation efficiency when compared with the conventional particle-packed columns. A capillary column for the simultaneous anion- and cation-exchange separation could be prepared by a step-by-step functionalization. The advantages of this column preparation will include: (1) no need of column packing; (2) no need of the preparation of silane reagents possessing anion- and cation-exchange functionalities; (3) the amount of immobilized polymer could be controlled by changing polymerization conditions. These columns should be suitable for the separation of biologically active compounds by the microHPLC modes.  相似文献   

10.
Chen TS  Liu CY 《Electrophoresis》2001,22(12):2606-2615
A histidine-functionalized silica was prepared by covalent bonding of the functional groups to silane-treated silica gel. Conversion of functional groups was confirmed by infrared (IR) spectra, elemental analysis, and potentiometry. The functionality of the silica gel is 0.293 mmol g(-1). The coordination behavior of the histidine-functionalized silica was investigated by metal capacity and electron paramagnetic resonance (EPR). EPR measurements at different copper loadings were made. The results showed that the copper histidine complex might be distorted tetragonal. Both histidine-functionalized silica and its copper complex were employed as stationary phases for packed capillary electrochromatography (CEC). Electrical current was found helpful for evaluating the properties of frit construction and the stationary phase packing. Test samples include neutral compounds, inorganic anions and organic anions. Factors influencing the separation behavior have been studied. With copper-histidine functionalized silica under the condition of citrate buffer (10 mM, pH 4.0) and applied voltage of -20 kV, the separation of benzoic acid, D- and L-mandelic acid, phthalic acid and salicylic acid could be achieved within 12 min. The column efficiency for these acids was more than 1.2 x 10(5) plates m(-1), except salicylic acid.  相似文献   

11.
Liu Y  Du Q  Yang B  Zhang F  Chu C  Liang X 《The Analyst》2012,137(7):1624-1628
A silica based amino stationary phase was prepared by immobilization of propargylamine on azide-silica via click chemistry. This readily prepared click amino stationary phase demonstrated good selectivity in separation of common inorganic anions under ion chromatography (IC) mode, and the triazole ring in combination with free amino group was observed to play a major role for separation of the anions examined. On the other hand, the stationary phase also showed good hydrophilic interaction liquid chromatography (HILIC) properties in the separation of polar compounds including nucleosides, organic acids and bases. The retention mechanism was found to match well the typical HILIC retention.  相似文献   

12.
以自制的6.0μm单分散大孔交联聚氯甲基苯乙烯-二乙烯基苯(Poly(4-vinylbenzylchloride-co-divi-nylbenzene),PCMS/DVB)微球为基质和引发剂,CuCl和自行合成的三[(2-二甲基氨基)乙基]胺(Tris[2-(dimeth-ylamino)ethyl]amine,Me6TREN)组成混合催化体系,使4-乙烯基吡啶(4-Vinyl pyridine,4-VP)在甲苯中进行原子转移自由基聚合,制得4-乙烯基吡啶聚合物,单体4-乙烯基吡啶的接枝率为8.55%。将该聚合物与正溴丁烷反应制得新型亲水色谱固定相。在亲水作用色谱模式下,流速1 mL/min,乙腈-水为流动相可分离5种芳胺化合物和4种酚类化合物。在离子交换色谱模式下,6 mmol/L Na2CO3-5.5 mmol/L NaHCO3为淋洗液可分别分离5种无机阴离子和4种短链有机酸。结果表明,此固定相对极性化合物和无机阴离子具有良好的分离性能,是一种性能优异的亲水作用色谱固定相。  相似文献   

13.
Monodisperse poly(glycidyl methacrylate-divinylbenzene) microspheres were functionalized with propyl sulfonic acid moieties to obtain beads negatively charged in a wide pH range. They were packed into fused-silica capillary of 50 micro, I.D. in order to separate proteins by capillary electrochromatography (CEC). Baseline separation of four basic proteins as well as three cytochrome c variants with an average column efficiency of 60,000 theoretical plates was obtained under isocratic elution conditions. The high efficiency is attributed to the uniformity of the column packing and the hydrophilic surface coverage of the polymer beads derived from the functionalization process. The effect of pH and salt concentration on protein separations was investigated and the results showed that the CEC separation mechanism is the combination of chromatographic retention and electrophoretic migration. Moreover, the column packed with the strongly acidic poly(glycidyl methacrylate-divinylbenzene) beads was also suitable for protein separations by micro-HPLC with a salt gradient. The comparison between the two kinds of elution modes shows that the column described here exhibited higher peak efficiency with isocratic elution in CEC than with gradient elution in micro-HPLC.  相似文献   

14.
Xie C  Hu J  Xiao H  Su X  Dong J  Tian R  He Z  Zou H 《Electrophoresis》2005,26(4-5):790-797
A silica-based monolithic capillary column was prepared via a sol-gel process. The continuous skeleton and large through-pore structure were characterized by scanning electron microscopy (SEM). The native silica monolith has been successfully employed in the electrochromatographic separation of beta-blockers and alkaloids extracted from traditional Chinese medicines (TCMs). Column efficiencies greater than 250 000 plates/m for capillary electrochromatography (CEC) separation of basic compounds were obtained. It was observed that retention of basic pharmaceuticals on the silica monolith was mainly contributed by a cation-exchange mechanism. Other retention mechanisms including reversed-phase and normal-phase mechanisms and electrophoresis of basic compounds also played a role in separation. A comparison of the differences between CEC and capillary zone electrophoresis (CZE) separation was also discussed.  相似文献   

15.
Hydrophilic macroporous weak and strong anion-exchange stationary phases have been prepared in a monolithic format within untreated fused-silica capillaries by the simple thermally or UV-initiated polymerization of 2-dimethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate and ethylene dimethacrylate in the presence of a binary porogenic mixture of dodecanol and cyclohexanol. The tertiary amino functionalities were then alkylated in situ to afford strong anion-exchangers. These new monolithic stationary phases with optimized porous properties were used for the CEC separation of various organic anions. Thus, a mixture of 2-substituted propionic acid drugs (profens) was separated in 13 min and high column efficiencies of up to 231,000 plates/m were achieved. The separation of substituted benzoic acids indicates that the selectivity results primarily from the anion-exchange interactions, while electrophoretic migration contributes only slightly. In addition, these hydrophilic anion-exchangers are also able to separate weakly acidic, neutral and basic compounds such as phenols, xanthines and aromatic amines in normal-phase electrochromatographic mode.  相似文献   

16.
胃蛋白酶亲和有机聚合物毛细管整体柱的制备及性能考察   总被引:1,自引:0,他引:1  
池翠杰  王伟  季一兵 《色谱》2014,32(8):791-797
以热引发原位聚合方法制备了聚(甲基丙烯酸缩水甘油酯(glycidyl methacrylate,GMA)-乙二醇二甲基丙烯酸酯(ethyleneglycol dimethacrylate,EDMA))毛细管整体柱,对整体柱的性能进行了表征。结果表明,柱内部结构均匀、渗透性好;整体柱能够实现苯等中性小分子化合物的分离,具有反相色谱特征,重现性和稳定性良好。利用整体柱环氧基团的活性,采用间接法,以戊二醛为连接臂制备胃蛋白酶亲和手性整体柱。在毛细管电色谱模式下进行了柱分离性能研究,并对缓冲液pH值和运行电压等分离条件进行了考察。结果表明,亲和整体柱对4种碱性手性药物(奈福泮、氨氯地平、西酞普兰、扑尔敏)有拆分效果,奈福泮、氨氯地平、西酞普兰能达到基线分离。本文为蛋白质亲和毛细管电色谱整体柱的制备和应用提供了新的思路和方法。  相似文献   

17.
A method for the preparation of poly(N-vinylpyrrolidone-co-pentaerythritol triacrylate copolymerization)-based monolithic capillary column was reported for the separation of polar small molecular weight compounds with nano-liquid chromatography in hydrophilic interaction chromatography mode. The monolithic columns were prepared by in situ copolymerization of N-vinylpyrrolidone and a cross-linker pentaerythritol triacrylate in a binary porogenic agent consisting of methanol and water. The composition of the polymerization solution was systematically optimized in terms of column permeability, theoretical plate number, asymmetric factor, and retention factor. A typical hydrophilic chromatography retention mechanism was observed with a mobile phase composed of a high content of organic solvent. The preparation method is simple and robust, the precursor N-vinylpyrrolidone is chemically stable, cheap, and easily available. The N-vinylpyrrolidone-based hydrophilic interaction chromatography stationary phase displays satisfactory separation selectivity for a range of polar test analytes, including benzoic acid derivatives, nucleosides, and phenols.  相似文献   

18.
磁场辅助毛细管电色谱是液相色谱研究领域中出现的新技术.它利用外加磁场的引力将置于毛细管内的具有磁响应性的硅胶微球或四氧化三铁微球固定在管内任意位置.磁场固定微球聚集体既可用作填充柱,直接用于电色谱分离;也可用作柱筛,用于填装由商品色谱填料组成的色谱柱.这一技术的优势在于制备简便易行,柱管可以再生使用,适合于微流控芯片上柱筛或柱床的制作.本文简要评述磁场辅助毛细管电色谱的进展,包括磁性色谱填料的制备,磁场固定柱床电色谱,磁性柱筛电色谱及毛细管柱内柱结构参数的测定等方面.  相似文献   

19.
Liu Z  Otsuka K  Terabe S  Motokawa M  Tanaka N 《Electrophoresis》2002,23(17):2973-2981
The physical adsorption method proposed previously has been successfully applied to a monolithic silica column. By virtue of the physical adsorption, a chiral stationary phase of avidin was prepared onto the silica monolith. The phase ratio of resulting stationary phase was evaluated with frontal analysis. The method proved to be comparable in phase ratio to the chemical bonding methods used in high-performance liquid chromatography (HPLC). Enantiomer separations were carried out in capillary electrochromatography (CEC) and capillary liquid chromatography (CLC) modes. Due to its larger phase ratio, the resulting column showed more powerful separation capability as compared to open-tubular CEC (OTCEC). Twelve chiral compounds were baseline-resolved. The resulting column showed high separation efficiency, with average theoretical plate numbers of 66 000/m for CLC and 122 000/m for CEC. Good reproducibility was observed, with RSD value less than 1.3% for retention time, retention factor and separation factor, and less than 6.6% for plate counts and resolution (n = 40). Fast separations were achieved with a short column. The test enantiomers were baseline-resolved within 4 min under CLC and CEC modes. In addition, field-enhanced sample injection (FESI) was coupled to CLC as well as CEC to improve the detection sensitivity.  相似文献   

20.
《印度化学会志》2021,98(8):100108
Chitosan exhibits great versatility in various biomedical fields and mesoporous silica nanoparticles have emerged as an interesting material in biomedical areas owing to their outstanding physio-chemical properties. The combination of inorganic silica and organic polymer such as chitosan, make them suitable for a wide range of biomedical applications. Here, we have explored the benefits of chitosan and silica by synthesizing chitosan-silica nanohybrid. In the synthesis of chitosan-silica (CS–Si) nanohybrid, chitosan is modified by thioglycolic acid and mesoporous silica MCM-41(Mobil Composition of Matter number 41) is functionalized by 3-(trimethoxysilyl)-1-propane thiol (TMSP). The modified chitosan and thiol functionalized MCM-41(inorganic network) is then linked through disulfide bond by oxidation process or oxidative coupling, resulting in the formation of inorganic-organic hybrid material. The hybrid material was characterized by FTIR, Raman, XRD, TGA, Zeta potential, EDX, Proton NMR and SEM techniques. The antibacterial results indicated that gram-negative (E. coli) bacteria exhibit better inhibition zone than gram-positive (B. subtilis) bacteria. The DPPH scavenging capability of synthesized hybrid was found to be 68%. The drug (quercetin) encapsulation efficiency of hybrid material was calculated to be 92.38% and more drug releases in acidic medium (pH 5.0) than at pH 7.4, so we can conclude that hybrid material shows pH-dependent drug releasing behavior. The results show that synthesized nano-hybrid material possess good antibacterial and antioxidant activities and is also a good nanocarrier for drug delivery application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号