首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this work is to study the effects of nanostructured surface coatings on boiling heat transfer and CHF. Boiling experiments are performed on a 100 μm diameter platinum wire immersed in saturated water or pentane at 1 bar. Nanostructured surface coating is obtained by deposition of charged γ-Fe2O3 nanoparticles (average diameter of 10 nm) on the platinum wire. Two different processes are compared: vigorous boiling and electrophoresis.The deposition of nanoparticles onto the heated surface induces a significant increase of the boiling critical heat flux (CHF) related to the increase of wettability. It also induces a decrease of the heat transfer coefficient when the wire is entirely covered with nanoparticles. The critical heat flux enhancement depends on the wettability of the fluid compared with the bare heater. Different physical mechanisms are also studied to explain the evolution of the characteristic parameters of the boiling on nanostructured surfaces.  相似文献   

2.
We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found that a reduction of the pool diameter leads to an enhancement of the nucleate boiling heat flux for most of the boiling curve. Our experimental results indicate that this enhancement is not affected by the depth of the boiling pot, the material of the bounding wall, or the diameter of the inlet water supply. High-speed camera imaging shows that the heat transfer enhancement for the spatially confined pool boiling occurs in conjunction with a stable circulating flow, which is in contrast to the chaotic and mainly upward motion for boiling in larger pool diameters. An explanation for the enhancement of the heat transfer and the associated change in flow pattern is found in the singularisation of the nucleate boiling process.  相似文献   

3.
Quantitative measurements are obtained from high-speed visualizations of pool boiling at atmospheric pressure from smooth and roughened surfaces, using a perfluorinated hydrocarbon (FC-77) as the working fluid. The boiling surfaces are fabricated from aluminum and prepared by mechanical polishing in the case of the smooth surface, and by electrical discharge machining (EDM) in the case of the roughened surface. The roughness values (Ra) are 0.03 and 5.89 μm for the polished and roughened surfaces, respectively. The bubble diameter at departure, bubble departure frequency, active nucleation site density, and bubble terminal velocity are measured from the monochrome movies, which have been recorded at 8000 frames per second with a digital CCD camera and magnifying lens. Results are compared to predictions from existing models of bubble nucleation behavior in the literature. Wall superheat, heat flux, and heat transfer coefficient are also reported.  相似文献   

4.
5.
Researches on two-phase flow and pool boiling heat transfer in microgravity, which included ground-based tests, flight experiments, and theoretical analyses, were conducted in the National Microgravity Laboratory/CAS. A semi-theoretical Weber number model was proposed to predict the slug-to-annular flow transition of two-phase gas–liquid flows in microgravity, while the influence of the initial bubble size on the bubble-to-slug flow transition was investigated numerically using the Monte Carlo method. Two-phase flow pattern maps in microgravity were obtained in the experiments both aboard the Russian space station Mir and aboard IL-76 reduced gravity airplane. Mini-scale modeling was also used to simulate the behavior of microgravity two-phase flow on the ground. Pressure drops of two-phase flow in microgravity were also measured experimentally and correlated successfully based on its characteristics. Two space experiments on pool boiling phenomena in microgravity were performed aboard the Chinese recoverable satellites. Steady pool boiling of R113 on a thin wire with a temperature-controlled heating method was studied aboard RS-22, while quasi-steady pool boiling of FC-72 on a plate was studied aboard SJ-8. Ground-based experiments were also performed both in normal gravity and in short-term microgravity in the drop tower Beijing. Only slight enhancement of heat transfer was observed in the wire case, while enhancement in low heat flux and deterioration in high heat flux were observed in the plate case. Lateral motions of vapor bubbles were observed before their departure in microgravity. The relationship between bubble behavior and heat transfer on plate was analyzed. A semi-theoretical model was also proposed for predicting the bubble departure diameter during pool boiling on wires. The results obtained here are intended to become a powerful aid for further investigation in the present discipline and development of two-phase systems for space applications.  相似文献   

6.
The present paper addresses the qualitative and quantitative analysis of the pool boiling heat transfer over micro-structured surfaces. The surfaces are made from silicon chips, in the context of pool boiling heat transfer enhancement of immersion liquid cooling schemes for electronic components. The first part of the analysis deals with the effect of the liquid properties. Then the effect of surface micro-structuring is discussed, covering different configurations, from cavities to pillars being the latter used to infer on the potential profit of a fin-like configuration. The use of rough surfaces to enhance pool boiling mainly stands on the arguments that the surface roughness will increase the liquid–solid contact area, thus enhancing the convection heat transfer coefficient and will promote the generation of nucleation sites. However, one should not disregard bubble dynamics. Indeed, the results show a strong effect of bubble dynamics and particularly of the interaction mechanisms in the overall cooling performance of the pair liquid–surface. The inaccurate control of these mechanisms leads to the formation of large bubbles and strong vertical and horizontal coalescence effects promote the very fast formation of a vapor blanket, which causes a steep decrease of the heat transfer coefficient. This effect can be strong enough to prevail over the benefit of increasing the contact area by roughening the surface. For the micro-patterns used in the present work, the results evidence that one can reasonably determine guiding pattern characteristics to evaluate the intensity of the interaction mechanisms and take out the most of the patterning to enhance pool boiling heat transfer, when using micro-cavities. Instead, it is far more difficult to control the appearance of active nucleation sites and the optimization of the patterns allowing a reasonable control of the interaction mechanisms and in particular of horizontal coalescence, when dealing with the patterns based on micro-pillars. Hence, providing an increase of the liquid contact area by an effective increase of the roughness ratio is not enough to assure a good performance of the micro-structured surface. Despite it was not possible to clearly evidence a pin–fin effect or of an additional cooling effect due to liquid circulation between the pillars, the results show a significant increase of the heat transfer coefficient of about 10 times for water and 8 times for the dielectric fluid, in comparison to the smooth surface, when the micro-patterning based on pillars is used.  相似文献   

7.
The nucleate pool boiling heat transfer coefficient of ammonia/water mixture was investigated on a cylindrical heated surface at low pressure of 4-8 bar and at low mass fraction of 0 < xNH3 < 0.3 and at different heat flux. The effect of mass fraction, heat flux and pressure on boiling heat transfer coefficient was studied. The results indicate that the heat transfer coefficient in the mixture decreases with increase in ammonia mass fraction, increases with increase in heat flux and pressure in the investigated range. The measured heat transfer coefficient was compared with existing correlations. The experimental data were predicted with an accuracy of ±20% by the correlation of Calus&Rice, correlation of Stephan-Koorner and Inoue-Monde correlation for ammonia/water mixture in the investigated range of low ammonia mass fraction. The empirical constant of the first two correlations is modified by fitting the correlation to the present experimental data. The modified Calus&Rice correlation predicts the present experimental data with an accuracy of ±18% and the modified Stephan-Koorner correlation with an accuracy of ±16%.  相似文献   

8.
This work reports experiments to visualize nucleate boiling on an enhanced tubular surface having sub-surface tunnels and surface pores. The finned copper tube had 1575 fins/m (40 fins/in.) and 0.8 mm fin height. The fins are covered by a thin foil sheet having 0.23 mm pores at 1.5 mm pore pitch along each interfin region. Data are provided for two foil cover sheets, one copper and the other a transparent plastic. The uniqueness of this work is that the visualization method allowed direct observation of the boiling process in the subsurface tunnels. Use of a high speed camera with 30 × magnification allowed detailed observation of the evaporation process in the tunnels and of the vapor bubbles emerging from the pores. The experiments were conducted for saturated and subcooled boiling in the horizontal and vertical orientations. For the vertical tube, the saturated boiling experiments showed that all of the tunnels were vapor filled except for liquid menisci in the corners. This was also true for the horizontal tube at high heat flux. For the horizontal tube at low heat flux, portions of the tunnel length was liquid filled. A large portion (70–90%) of the region was vapor filled except for liquid menisci in the corners, and the remaining part of the region had oscillating menisci. These experiments provide conclusive proof that the heat transfer mechanism in the subsurface tunnels is evaporation on the menisci in the corners.  相似文献   

9.
The nonazeotropic binary mixtures such as, methanol/water, ethanol/water and ammonia/water, have variable boiling and dew points, depending on the combination of substance and those mass fraction. It is expected to have a higher performance as a result of decreasing the thermodynamically irreversible loss, when there is a relevant mass fraction. Therefore, ammonia/water mixture is expected to use as working fluid in small temperature difference power generation cycles and absorption refrigeration cycles. However, few experiments were carried out for measuring heat transfer coefficient for ammonia/water mixture in the world. An experimental study has been carried out to measure boiling heat transfer coefficient of an ammonia/water mixture on a horizontal heated surface at low pressure of 0.2, 0.4 and 0.7 MPa and at low mass fraction of 0 < C < 0.27 and at high pressure 0.7, 1.0 and 1.5 MPa and at mass fraction of 0.5 < C < 1.0 and at heat flux under critical heat flux the heat transfer coefficient are compared with existing correlations prediction and a revised correlation can be proposed to predict them well.  相似文献   

10.
Boiling heat transfer measurements on a tube designed to yield the peripheral variation of heat transfer coefficient without interfering with the nucleation site density are presented. A variation of up to 25% around the tube is found with a maximum at the base. High speed cine photography was used to estimate the variation of mean bubble layer thickness and mean velocities with angle. An iterative heat balance around the periphery indicated a voidage decrease from about unity at the base to 0.3–0.6 at 90°  相似文献   

11.
Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid was investigated experimentally. Three types of surfactants including Sodium Dodecyl Sulfate (SDS), Cetyltrimethyl Ammonium Bromide (CTAB) and Sorbitan Monooleate (Span-80) were used in the experiments. The refrigerant-based nanofluid was formed from Cu nanoparticles and refrigerant R113. The test surface is horizontal with the average roughness of 1.6 μm. Test conditions include a saturation pressure of 101.3 kPa, heat fluxes from 10 to 80 kW m−2, surfactant concentrations from 0 to 5000 ppm (parts per million by weight), and nanoparticle concentrations from 0 to 1.0 wt.%. The experimental results indicate that the presence of surfactant enhances the nucleate pool boiling heat transfer of refrigerant-based nanofluid on most conditions, but deteriorates the nucleate pool boiling heat transfer at high surfactant concentrations. The ratio of nucleate pool boiling heat transfer coefficient of refrigerant-based nanofluid with surfactant to that without surfactant (defined as surfactant enhancement ratio, SER) are in the ranges of 1.12-1.67, 0.94-1.39, and 0.85-1.29 for SDS, CTAB and Span-80, respectively, and the values of SER are in the order of SDS > CTAB > Span-80, which is opposite to the order of surfactant density values. The SER increases with the increase of surfactant concentration and then decreases, presenting the maximum values at 2000, 500 and 1000 ppm for SDS, CTAB and Span-80, respectively. At a fixed surfactant concentration, the SER increases with the decrease of nanoparticle concentration. A nucleate pool boiling heat transfer correlation for refrigerant-based nanofluid with surfactant is proposed, and it agrees with 92% of the experimental data within a deviation of ±25%.  相似文献   

12.
Enhancement of the critical heat flux in pool boiling by the attachment of a honeycomb-structured porous plate on a heated surface is investigated experimentally using water under saturated boiling conditions. As the height of the honeycomb porous plate on the heated surface decreases, the CHF increases to 2.5 MW/m2, which is approximately 2.5 times that of a plain surface (1.0 MW/m2). Automatic liquid supply due to capillary action and reduction of the flow resistance for vapor escape due to the separation of liquid and vapor flow paths by the honeycomb-structure are verified to play an important role in the enhancement of the CHF. A simplified one-dimensional model for the capillary suction limit, in which the pressure drops due to liquid and vapor flow in the honeycomb porous plate balances the capillary force, is applied to predict the CHF. The calculated results are compared with the measured results.  相似文献   

13.
High speed visualizations and thermal performance studies of pool boiling heat transfer on copper foam covers were performed at atmospheric pressure, with the heating surface area of 12.0 mm by 12.0 mm, using acetone as the working fluid. The foam covers have ppi (pores per inch) from 30 to 90, cover thickness from 2.0 to 5.0 mm, and porosity of 0.88 and 0.95. The surface superheats are from −20 to 190 K, and the heat fluxes reach 140 W/cm2. The 30 and 60 ppi foam covers show the periodic single bubble generation and departure pattern at low surface superheats. With continuous increases in surface superheats, they show the periodic bubble coalescence and/or re-coalescence pattern. Cage bubbles were observed to be those with liquid filled inside and vented to the pool liquid. For the 90 ppi foam covers, the bubble coalescence takes place at low surface superheats. At moderate or large surface superheats, vapor fragments continuously escape to the pool liquid.  相似文献   

14.
Nucleate pool boiling experiments with constant wall temperature were performed using pure R113 for subcooled, saturated, and superheated pool conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain the constant wall temperature and to measure the instantaneous heat flow rate accurately with high temporal and spatial resolutions. Images of bubble growth were taken at 5000 frames per second using a high-speed CCD camera synchronized with the heat flow rate measurements. The bubble geometry was obtained from the captured bubble images. The effect of the pool conditions on the bubble growth behavior was analyzed using dimensionless parameters for the initial and thermal growth regions. The effect of the pool conditions on the heat flow rate behavior was also examined. The bubble growth behaviors during subcooled, saturated, and superheated pool boiling were analyzed using a modified Jakob number that we newly defined. Dimensionless time and bubble radius parameters with the modified Jakob number characterized the bubble growth behavior well. These phenomena require further analysis for various pool temperature conditions, and this study will provide good experimental data with precise constant wall temperature boundary condition for such works.  相似文献   

15.
16.
17.
Experiments were performed to study boiling induced nanoparticle coating and its influence on pool boiling heat transfer using low concentrations of CuO- nanofluid in distilled water at atmospheric pressure. To investigate the effect of the nanoparticle coated surface on pool boiling performance, two different concentrations of CuO nanofluids (0.1 and 0.5?g/l) were chosen and tests were conducted on a clean heater surface in nanofluid and nanoparticle coated surface in pure water. For the bare heater tested in CuO nanofluid, CHF was enhanced by 35.83 and 41.68?% respectively at 0.1 and 0.5?g/l concentration of nanofluid. For the nanoparticle coated heater surface obtained by boiling induced coating using 0.1 and 0.5?g/l concentration of nanofluid and tested in pure water, CHF was enhanced by 29.38 and 37.53?% respectively. Based on the experimental investigations it can be concluded that nanoparticle coating can also be a potential substitute for enhancing the heat transfer in pure water. Transient behaviour of nanofluid was studied by keeping heat flux constant at 1,000 and 1,500?kW/m2 for 90?min in 0.5?g/l concentration. The boiling curve shifted to the right indicating degradation in boiling heat transfer due to prolonged exposure of heater surface to nanofluid. Experimental outcome indicated that pool boiling performance of nanofluid could be a strong function of time and applied heat flux. The longer the duration of exposure of the heater surface, the higher will be the degradation in heat transfer.  相似文献   

18.
Effect of inclination angles on the pool boiling heat transfer on ultra-light copper foam covers was studied using acetone as the working fluid. The inclination angle was from 0° to 90°. It is found that copper foam covers decrease the surface superheat at the onset of nucleate boiling and extend the operation ranges of surface superheats and heat fluxes, significantly. Boiling curves are crossed between low and high inclination angles. Heat transfer coefficients are increased, attain maximum values, and then are decreased with continuous increases in heat fluxes. The thermal performance is very insensitive to inclination angles at low pool liquid temperatures. The thermal performance is better for the saturation pool boiling heat transfer at small surface superheats, but it is better for the subcooled pool boiling heat transfer at high surface superheats. The Nusselt number is well correlated using the 812 data points, with the maximum error of 20%.  相似文献   

19.
The experimental data for heat transfer during nucleate pool boiling of saturated liquid metals on plain surfaces are surveyed and a new correlation is presented. The correlation is h = Cq0.7prm, where C and m are, respectively, 13.7 and 0.22 pr < 0.001 and 6.9 and 0.12 for pr > 0.001 (h is in W/m2 K and q in W/m2). This correlation has been verified with data for K, Na, Cs, Li, and Hg from 17 sources over the reduced pressure (pr) range of 4.3 × 10−6 to 1.8 × 10−2. The correlation of Subbotin et al. was found unsatisfactory, but a modified correlation was developed that also gives good agreement with most of the data.  相似文献   

20.
This work represents an experimental basic research aimed to investigate the influence on the heat transfer rate of the ultrasounds, in free convection and in presence of liquid. In fact the ultrasonic waves induce, thanks to vibrations, turbulence on the dynamic field, and so an increase of the convection coefficient. The heater is a circular cylinder, immersed in distilled water, and warmed up by Joule effect. This study has carried on for 1 year at Energetics Department “L. Poggi”. The effect was observed since 1960s: different authors had studied the cooling effect due to the ultrasonic waves at different heat transfer regimes, especially from a thin platinum wire to water. We have chosen to investigate the subcooled boiling regime, because this one is the best condition for the heat transfer enhancement, according to the scientific literature. We have carried out a wide experimental study, varying the different water subcooling degrees, the ultrasonic generator power, the ultrasound frequency and the placement of the heater inside the ultrasonic tank, in function of the range of the values of heat flux per unit surface needed dissipating. These values were supplied us by a possible practical application of the ultrasonic streaming: the cooling of 3D highly integrated electronic components. These packaging systems should have to provide all future devices, such as electronics, actuators, sensors and antenna. In fact, for these systems the thermal problem is a critical challenge, because they do not have to overtake critical temperature, after that they could damage irreversibly. Moreover, the traditional cooling systems used in electronic do not seem to be useful for them. On the contrary, the results obtained with ultrasounds, allow heat transfer coefficient enhancement of about 50% to be reached.The purpose is to find out the set of optimal conditions, in order to apply successively all the results to a real packaging system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号