首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
By using thermal imaging technique and film thickness metering system, the surface wave and film thickness of the heated falling liquid film were experimentally investigated. Temperature variations of the heated film induce surface tension gradient and so-caused Marangoni flow that attempts to avoid the temperature variations. There are three kinds of Marangoni flow appearing in the heated falling liquid film. It is found that the lateral Marangoni flow (MF I) and the streamwise Marangoni flow (MF II) make the heated film thick, while the Marangoni flow in the surface wave (MF III) reinforces the wave and makes the heated film thin. The intensity of Marangoni flow is determined by the flow rate and the heating conditions. MF I and MF II are both enhanced with the increasing liquid flow rate. Moreover, MF III is prominent under moderate flow rates and is gradually weakened at high flow rates. The distance over which MF III starts, increases with a rise in flow rate, but is independent of the heating condition.  相似文献   

2.
3.
高超声速溢流冷却实验研究   总被引:2,自引:1,他引:1  
高超声速溢流冷却是一种新型的飞行器热防护方法,基本思想为:在高热流区布置溢流孔,控制冷却液以溢流方式流出,之后通过飞行器表面摩阻作用展布为液膜,形成热缓冲层以降低飞行器表面热流. 目前,溢流冷却技术还处于探索阶段,实现工程应用前还需开展大量的实验验证和机理研究工作. 本文首次开展溢流冷却的实验研究工作,采用热流测量、液膜厚度测量及液膜流动特性观测技术,搭建了完善的溢流冷却风洞实验平台,对溢流冷却热防护性能和高超声速条件下液膜流动规律进行了初步研究. 研究表明:(1) 高超声速流场中通过溢流能够在飞行器表面形成液膜并有效隔离外部高温气流,可降低飞行器表面热流率;(2) 楔面上的液膜前缘流动是一个逐渐减速的过程,增加冷却液流量液膜厚度变化不明显,但液膜前缘运动速度增大;(3) 液膜层存在表面波,在时间和空间方向发生演化,导致液膜厚度的微弱扰动;(4) 液膜层存在横向展宽现象,即液膜层宽度大于溢流缝宽度. 原因是液膜层与流场边界层条件不匹配,存在压力梯度,迫使冷却液向低压区流动,从而展宽液膜层,并且流量越高,横向展宽现象越明显.   相似文献   

4.
师晋生 《力学季刊》2006,27(4):693-698
对高粘度液体在等温正弦形波纹壁面上的自由降落与蒸发建立了摄动分析模型。得到了流动的分析解和蒸发传热的数值解。考察了壁面波纹的波幅和波数、液膜表面张力及贝克利数对流动与传热的影响,结果表明,加大波纹的波幅、适当选择波数、减小贝克利数可增强传热,而表面张力对蒸发传热的影响较小。  相似文献   

5.
Experimental results are presented on the flooding gas velocity in tubes over a wide range of parameters—tube diameter, tube length, liquid flow rate, liquid viscosity and surface tension. The flooding phenomenon is caused by interaction between the waves on the liquid film and the upward gas stream. By measuring variation of the maximum height of the wavy liquid films with an increase of the gas flow rate, the complicated effects of tube length and surface tension on flooding are revealed. The data of the flooding velocity are empirically correlated in termes of nondimensional groups for each tube length.  相似文献   

6.
The convective heat transfer between a circular free surface impinging jet and a solid surface has been studied numerically. The thin liquid film formed on the surface has been assumed to be in non-turbulent free surface flow. The effects of surface tension, viscosity, gravity and heat transfer between the film flow and the solid surface have been taken into account. The flow structure on a non-heated surface has been investigated first. Next, the steady-state flow structure in the liquid film as well as the heat transfer has been examined. The predicted results have been compared with experimental data for the purpose of validating the analysis. The hydrodynamics of the liquid film and the heat transfer processes have been investigated numerically to understand the physics of the phenomena. Received on 5 October 1998  相似文献   

7.
A macroscopic rheological theory for compressible isothermal nematic liquid crystal films is developed and used to characterize the interfacial elastic, viscous, and viscoelastic material properties. The derived expression for the film stress tensor includes elastic and viscous components. The asymmetric film viscous stress tensor takes into account the nematic ordering and is given in terms of the film rate of deformation and the surface Jaumann derivative. The material function that describes the anisotropic viscoelasticity is the dynamic film tension, which includes the film tension and dilational viscosities. Viscous dissipation due to film compressibility is described by the anisotropic dilational viscosity. Three characteristic film shear viscosities are defined according to whether the nematic orientation is along the velocity direction, the velocity gradient, or the unit normal. In addition the dependence of the rheological functions on curvature and film thickness has been identified. The rheological theory provides a theoretical framework to future studies of thin liquid crystal film stability and hydrodynamics, and liquid crystal foam rheology. Received: 9 October 2000 Accepted: 6 April 2001  相似文献   

8.
Wave regimes of viscous liquid film flows are considered when the viscosity coefficients vary in a wide range. An approximate model system of differential equations with two external governing parameters for the film layer thickness and the local flow rate is derived. The viscous dissipation of a film layer is taken into account in this system more accurately than in the well-known one-parameter Shkadov model. New properties of linear and nonlinear waves caused by the hydrodynamic instability of high-viscous liquid flows under gravity and surface tension are found.  相似文献   

9.
高超声速液膜冷却技术是通过一系列狭缝或孔洞压出冷却工质,在飞行器表面边界层形成一层低温冷却膜,阻止高超声速气流对飞行器的气动加热.其作为一种主动冷却方式在高超声速飞行器表面热防护有着巨大的应用潜力.文章采用数值方法,结合VOF模型,研究25 km飞行高度和Ma=5气流条件下的液膜铺展情况,并通过不同冷却工质的入射速度、角度、表面张力和黏性系数条件,讨论了液膜在平板上的演化过程和冷却机理.结果表明,在气流作用下,液膜向壁面下游发展,液膜的存在导致边界层分离,连续液膜会在一定位置断裂为液块,然后进一步破碎为液滴.入射条件和液体性质的改变,会影响液膜沿流向的发展,具体表现在连续液膜断裂点的位置和连续液膜的厚度.在所设定的计算域内,壁面热流降低了80%~95%,液膜对壁面的冷却效率随着液膜形态的变化而变化.  相似文献   

10.
For vertical gas-liquid annular flow the fraction of the liquid in the gas is controlled by the rate of atomization of the liquid film flowing along the wall and the rate of deposition of droplets entrained in the gas. Measurements of the rate of atomization are interpreted by a Kelvin-Helmholtz mechanism. Small wavelets on the liquid film are visualized to be entrained when wave-induced variations in the gas pressure cannot be counterbalanced by surface tension effects.  相似文献   

11.
The transient two‐layer thin‐film planar flow is investigated theoretically in this study. The interplay among inertia, viscous and surface/interfacial tension is emphasized. It is found that the film and interface profiles, as well as the flow field, are strongly influenced by the viscosity ratio, velocity and film thickness ratios at inception, and the surface‐to‐interfacial tension ratio. The nonlinear stability of the steady state reveals the formation of a solitary wave after flow inception, which propagates in the form of a convective instability, with the steady state recovered only in the tail (upstream) region of the wave. In the presence of surface/interfacial tension, surface modulation appears, which grows in wavelength and amplitude with position. The flow is found to be particularly stable for higher viscosity of the lower film layer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A pore-network model of evaporation of a binary liquid mixture into a ternary gas phase is developed. The model is applied to study the influence of surface tension gradients induced by composition variations of the liquid on the phase distribution within a capillary porous medium. Numerical simulations based on the proposed model show that the surface tension gradients lead to the accumulation of liquid near the open edge of the network. This surface tension gradient effect is only significant for weakly disordered porous media.  相似文献   

13.
Equations of a thinfilm flow with linear dependences of viscosity and surface tension of the liquid on temperature are derived. The impact of various factors on the shape of the free boundary of the film are numerically analyzed.  相似文献   

14.
When a drop of insoluble surfactant is deposited on the surface of a thin liquid film, a radial flow is induced by the resulting surface tension gradient. It is difficult in practice to measure or visualize the evolution of the surfactant concentration and the corresponding surface tension field. In this contribution, we propose a numerical technique which allows, in theory, the reconstruction of the surfactant concentration and surface tension fields from the knowledge of the free surface velocity. The method also requires the knowledge of the equation of state relating the surfactant concentration to the surface tension. The proposed method is based on a reformulation of the lubrication approximation which then takes as an input the free surface velocity field. As a by-product, the film thickness is also reconstructed. We also show in this contribution, that the surface diffusion coefficient can also be estimated, in principle. The methodologies are successfully tested on ideal, synthetic data-sets but also on under-resolved, noisy, data-sets more representative of true experimental conditions. This contribution may help shed some light on the phenomena involved in surfactant transport.  相似文献   

15.
The present study describes the wall shear stress and the falling liquid film behavior in upward vertical slug flow of air and high viscosity oil. The frictional pressure gradient is directly related to the wall shear stress, and it is usually negative (opposite to the overall flow direction). However, in vertical slug flow, the average total wall shear stress of a slug unit may be negative (in the same direction of the overall flow), resulting in a positive frictional pressure gradient. However, this does not mean, by any way, generation of additional energy or violation of the second law of thermodynamics.The positive frictional pressure gradient phenomenon, reasons and required conditions were explained in this paper. A simplified model was developed and validated against recent experimental data of air-high viscosity oil slug flow in a 50.8 mm ID vertical pipe. The oil viscosity was in the range of 127 mPa s to 580 mPa s. Positive frictional pressure gradient appears when the liquid film wall shear stress supersede the wall shear stress in the slug body. The rate of increase of both wall shear stresses (with respect to the mixture Reynolds number) depend, not only, on the mixture Reynolds number but also, highly, on the liquid viscosity.  相似文献   

16.
Thin and ultra-thin shear-driven liquid films in a narrow channel are a promising candidate for the thermal management of advanced semiconductor devices in earth and space applications. Such flows experience complex, and as yet poorly understood, two-phase flow phenomena requiring significant advances in fundamental research before they could be broadly applied. This paper focuses on the results obtained in experiments with locally heated shear-driven liquid films in a flat mini-channel. A detailed map of the flow sub-regimes in a shear-driven liquid film flow of water and FC-72 have been obtained for a 2 mm channel operating at room temperature. While the water film can be smooth under certain liquid/gas flow rates, the surface of an intensively evaporating film of FC-72 is always distorted by a pattern of waves and structures. It was found, that when heated the shear-driven liquid films are less likely to rupture than gravity-driven liquid films. For shear-driven water films the critical heat flux was found of up to 10 times higher than that for a falling film, which makes shear-driven films (annular or stratified two-phase flows) more suitable for cooling applications than falling liquid films.  相似文献   

17.
The surface tension driven flow in the liquid vicinity of gas bubbles on a heated solid wall has been investigated both, in a reduced gravity environment aboard a sounding rocket, and in an earth-bound experiment. Both experiments deal with temperature gradients within the liquid surrounding of a bubble which cause variations of the surface tension. These, in turn, lead to a liquid flow around the bubble periphery termed thermocapillary or thermal Marangoni-convection. On Earth, this phenomenon is widely masked by buoyancy. We therefore carried out an experiment under reduced gravitational acceleration. In order to simultaneously observe and record the flow field and the temperature field liquid crystal tracers have been applied. These particles offer the feature of selectively reflecting certain wavelengths of incident white light depending on the crystals temperature. Although the bubble injection system did not perform nominally during the flight experiment, some interesting flow characteristics could be observed. Comparison of results obtained in microgravity to data measured on Earth reveal that due to the interaction of thermocapillarity and buoyancy a very compact vortex flow results on ground, while in microgravity the influence on the surface tension driven flow penetrates much deeper into the bulk. This result is of special interest regarding the production of materials in space. Dedicated to Professor Dr. Julius Siekmann on the occasion of his 70th birthday The work described herein was supported by the German space agency DARA (Deutsche Agentur für Raumfahrtangelegenheiten GmbH) through DARA Grant 50 WM 9434. The authors thank the European Space Agency (ESA) for the opportunity to conduct the TEXUS 33 sounding rocket experiment. The flight hardware has been partly built by Daimler-Benz-Aerospace which is gratefully acknowledged. Also, the authors are indebted to Mr. H.-H. Wolf for his careful evaluation of the particle images  相似文献   

18.
热毛细对流速度场测试研究   总被引:1,自引:1,他引:1  
冯传玉  何世平 《实验力学》1998,13(4):429-433
为了探索微重力状态下表面张力驱动流速度场的测试技术,本文在地面进行了模拟实验,对位于热壁下流体中气泡周围的表面张力驱动流进行了研究,并用PIV技术测量了流场的速度分布.  相似文献   

19.
Three-dimensional flow behavior of thin liquid film that is shear-driven by turbulent air flow in a duct is measured and simulated. Its film thickness and width are reported as a function of air velocity, liquid flow rate, surface tension coefficient, and wall contact angle. The numerical component of this study is aimed at exploring and assessing the suitability of utilizing the FLUENT-CFD code and its existing components, i.e. Volume of Fluid model (VOF) along with selected turbulence model, for simulating the behavior of 3D shear-driven liquid film flow, through a comparison with measured results. The thickness and width of the shear-driven liquid film are measured using an interferometric technique that makes use of the phase shift between the reflections of incident light from the top and bottom surfaces of the thin liquid film. Such measurements are quite challenging due to the dynamic interfacial instabilities that develop in this flow. The results reveal that higher air flow velocity decreases the liquid film thickness but increases its width, while higher liquid flow rate increases both its thickness and width. Simulated results provide good estimates of the measured values, and reveal the need for considering a dynamic rather than a static wall contact angle in the model for improving the comparison with measured values.  相似文献   

20.
The instability of a plane liquid film with a uniform transverse temperature gradient under conditions of weightlessness is considered. The surface tension is assumed to depend linearly on the temperature. On the basis of an exact solution of the neutral perturbation problem for a layer with deformable boundaries, the instability domains, the dispersion curves, and the shape of the perturbations are determined. It is shown that on the interval of low Prandtl numbers both thermocapillary waves with predominantly longitudinal flow and capillary waves, supported by the thermocapillary effect, with intense transverse liquid flow can develop on the film.Perm'. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 30–36, September–October, 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号