首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
2.
To predict the characteristics of dense liquid-solid two-phase flow, K-ε-T model is established, in which the turbulent flow of fluid phase is described with fluid turbulent kinetic energy Kf and its dissipation rate εf, and the particles random motion is described with particle turbulent energy Kp and its dissipation rate εp and pseudothermal temperature Tp. The governing equations are also derived. With K-ε-T model, numerical study of dense liquid-solid two-phase turbulent up-flow in a pipe is performed. The calculated results are in good agreement with experimental data of Alajbegovic et al. (1994), and some flow features are captured.  相似文献   

3.
This work is dedicated to the modeling of gas–liquid flows in pipes. As a first step, a new two-layer model is proposed to deal with the stratified regime. The starting point is the isentropic Euler set of equations for each phase where the classical hydrostatic assumption is made for the liquid. The main difference with the models issued from the classical literature is that the liquid as well as the gas is assumed compressible. In that framework, an averaging process results in a five-equation system where the hydrostatic constraint has been used to define the interfacial pressure. Closure laws for the interfacial velocity and source terms such as mass and momentum transfer are provided following an entropy inequality. The resulting model is hyperbolic with non-conservative terms. Therefore, regarding the homogeneous part of the system, the definition and uniqueness of jump conditions is studied carefully and acquired. The nature of characteristic fields and the corresponding Riemann invariants are also detailed. Thus, one may build analytical solutions for the Riemann problem. In addition, positivity is obtained for heights and densities. The overall derivation deals with gas–liquid flows through rectangular channels, circular pipes with variable cross section and includes vapor–liquid flows.  相似文献   

4.
5.
6.
The dependence of the fully-developed flow profiles on the inlet flow conditions for gas–solids two-phase flows, i.e. the flow multiplicity phenomenon, in circulating fluidized bed (CFB) risers was proposed and discussed in this article. The flow multiplicity phenomenon for gas–solids two-phase flows was first proved mathematically based on the conservation equations of mass and momentum. Then the CFD model using Eulerian–Eulerian approach with kε turbulence model for each phase was further adopted to analyze the details of this flow multiplicity phenomenon. It is theoretically and numerically revealed that for gas–solids two-phase flows, the flow profiles in the fully-developed region are always dominated by the flow profiles at the inlet. The solids concentration profile is closely coupled with the velocity profile, and the inlet solids concentration and velocity profiles can largely influence the fully-developed concentration and velocity profiles.  相似文献   

7.
Two-phase air–water flow characteristics are experimentally investigated in horizontal circular micro-channels. Test sections are made of fused silica. The experiments are conducted based on three different inner diameters of 0.53, 0.22 and 0.15 mm with the corresponding lengths of 320, 120 and 104 mm, respectively. The test runs are done at superficial velocities of gas and liquid ranging between 0.37–42.36 and 0.005–3.04 m/s, respectively. The flow visualisation is facilitated by systems mainly including stereozoom microscope and high-speed camera. The flow regime maps developed from the observed flow patterns are presented. The void fractions are determined based on image analysis. New correlation for two-phase frictional multiplier is also proposed for practical applications.  相似文献   

8.
The two-equation `low Reynolds number' k-? model of turbulence with a set of universal constants suggested by Launder and Sharma is modified in the present paper. The variability of the turbulent Prandtl number Prt in the energy equation is assumed along with a change of a constant in the dissipation term of the turbulent kinetic energy equation. The turbulent heat transfer is computed for an air flow in a circular pipe for the Reynolds number within the range of 104?4. The modification considerably improves the agreement between the numerical results and the experiment data published in the available literature.  相似文献   

9.
Dense gas–solid flow with solid volume fraction greater than 10% and at moderate Reynolds number is important in many industrial facilities such as fluidized beds. In this work, the Euler–Lagrange approach in combination with a deterministic collision model is applied to a laboratory-scale fluidized bed. The fluid–particle interaction is studied using a new procedure called the offset method, which results in several numbers of spatial displacements of the fluid grid. The proposed method is highly precise in determining porosity and momentum transfer, thus improving simulation accuracy. A validation study was carried out to assess the results using this in-house CFD/DEM code against 5-s operation of a Plexiglas spouted-fluidized bed, showing good qualitative correlation of solid distribution in the bed and acceptable quantitative agreement of pressure drops at different positions in the bed. In view of high computing cost, special emphasis is placed on effective program design, such as application of advanced detection algorithm for particle–particle/wall collisions, the multi-grid method and parallel calculation. In this context, the influence of increasing the processor number, up to 36, on calculation efficiency was investigated.  相似文献   

10.
The existence of periodic solutions of the Navier-Stokes equations in function spaces based upon (L p())nis proved. The paper has three parts, (a) A proof of the existence of strong solutions of the evolution equation with initial data in a solenoidal subspace of (L p())n. (b) The evolution equation is restricted to a space of time periodic functions and a Fredholm integral equation on this space is formed. The Lyapunov-Schmidt method is applied to prove the existence of bifurcating time periodic solutions in the presence of symmetry. (c) The theory is applied to the bifurcation of periodic solutions from planar Poiseuille flow in the presence of symmetry (SO(2) x O(2) x S 1) yielding new results for this classic problem. The O(2) invariance is in the spanwise direction. With the periodicity in time and in the streamwise direction we find that generically there is a bifurcation to both oblique travelling waves and to travelling waves that are stationary in the spanwise direction. There are however points of degeneracy on the neutral surface. A numerical method is used to identify these points and an analysis in the neighborhood of the degenerate points yields more complex periodic solutions as well as branches of quasi-periodic solutions.  相似文献   

11.
Flow interaction with a bluff body generates a highly complex flow field and has been the subject of much experimental and theoretical analysis. It has been shown that large eddy simulation (LES) modelling provides a more realistic analysis of the flow for such situations where the large scales of turbulence must be resolved. The inherent small-scale spatial velocity averaging in particle image velocimetry (PIV) is commensurate with the sub-grid scale modelling of LES and, therefore, offers potential as a code refinement technique. To demonstrate this potential, however, PIV must be performed with a temporal resolution of typically kHz and a spatial resolution of sub-mm2 to be relevant for the vast majority of flows of engineering interest. This paper reports the development of a high-speed PIV system capable of operating at 20 kHz with a spatial resolution of 0.9 mm2. This is the combined highest speed, highest resolution PIV data reported to date. The experiment chosen to demonstrate the system is the study of the steady flow interaction with circular and square cross-section obstacles. A Reynolds number of 3,900 is chosen for the cylinder flow to extend the database used by Breuer M. (1998 Int J Heat Fluid 19:512–521) in his extensive LES modelling of this flow. Data presented include a sequence of two-dimensional velocity and vorticity fields, including flow streamlines. Importantly, the random error, inherent in a PIV measurement, is discussed and a formula presented which allows the error to be estimated and regions of the flow identified where LES comparisons would be uncertain.  相似文献   

12.
The transition from annular to wavy-stratified oil–water adiabatic flow within horizontal pipes is experimentally analyzed, and a semiempirical model is proposed. The transition is referred to as critical because it occurs suddenly, giving rise to a sharp and strong increase in the pressure drop due to the contact of the high-viscosity oil with the pipe wall. This could lead to a dangerous accident in pipelines. Experimental runs were performed on eight test sections of both Plexiglas® and Pyrex® pipes with internal diameters ranging from 21.5 to 50 mm, using tap water and oil with viscosity about 880 times higher than that of water. On the basis of pressure drop measurement and flow pattern visualization, the transition boundary between annular and wavy-stratified flow was analytically determined and compared with flow pattern maps.  相似文献   

13.
The unsteady dynamics of the Stokes flows, where , is shown to verify the vector potential–vorticity ( ) correlation , where the field is the pressure-gradient vector potential defined by . This correlation is analyzed for the Stokes eigenmodes, , subjected to no-slip boundary conditions on any two-dimensional (2D) closed contour or three-dimensional (3D) surface. It is established that an asymptotic linear relationship appears, verified in the core part of the domain, between the vector potential and vorticity, , where is a constant offset field, possibly zero.  相似文献   

14.
15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号