首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
A solver is developed for time-accurate computations of viscous flows based on the conception of Newton‘s method. A set of pseudo-time derivatives are added into governing equations and the discretized system is solved using GMRES algorithm. Due to some special properties of GMRES algorithm, the solution procedure for unsteady flows could be regarded as a kind of Newton iteration. The physical-time derivatives of governing equations are discretized using two different approaches, I.e., 3-point Euler backward, and Crank-Nicolson formulas, both with 2nd-order accuracy in time but with different truncation errors. The turbulent eddy viscosity is calculated by using a version of Spalart~Allmaras one-equation model modified by authors for turbulent flows. Two cases of unsteady viscous flow are investigated to validate and assess the solver, I.e., low Reynolds number flow around a row of cylinders and transonic bi-circular-arc airfoil flow featuring the vortex shedding and shock buffeting problems, respectively. Meanwhile, comparisons between the two schemes of timederivative discretizations are carefully made. It is illustrated that the developed unsteady flow solver shows a considerable efficiency and the Crank-Nicolson scheme gives better results compared with Euler method.  相似文献   

2.
In this paper we propose a new method for obtaining the exact solutions of the Mavier-Stokes (NS) equations for incompressible viscous fluid in the light of the theory of simplified Navier-Stokes (SNS) equations developed by the first author[1,2], Using the present method we can find some new exact solutions as well as the well-known exact solutions of the NS equations. In illustration of its applications, we give a variety of exact solutions of incompressible viscous fluid flows for which NS equations of fluid motion are written in Cartesian coordinates, or in cylindrical polar coordinates, or in spherical coordinates. The project supported by National Natural Science Foundation of China.  相似文献   

3.
The impact test in structural parts for dynamic applications is an essential procedure for their certification in the presence of time dependent loads. In the case of beam elements, either built with one material or as an assembly of different material members joined with recent developed bonding techniques, an impact test is of leading importance, once the dynamic resistance of the joints involved in the beam fabrication is assessed and evaluated. The pseudo-dynamic method is an alternative to dynamic analysis of structures, here offering to the researcher the possibility of examining with detail the specimen in test for the initiation and progress of eventual damage mechanisms arising in the beam element joints whenever included in the design.  相似文献   

4.
This paper proposes a novel hybrid method to simulate the dry granular flow of materials over a wide range of inertial numbers that simultaneously covers the quasi-static and dense granular flow regimes. To overcome the lack of incremental objectivity whenever large deformations occur in solid-like regimes and to remove computational singularities in fluid-like regimes close to rest, the elastic–perfectly plastic theory based on the Drucker–Prager yield criterion is combined with the theory of dense granular flows. By implementing some new modifications at the boundaries and removing all ghost particles, smoothed particle hydrodynamics (SPH) is used as the framework for the method. A number of benchmark problems have been solved to show the capabilities of the new modified SPH method. Precise prediction of both location and pressure makes the modifications comparable with the previous works on SPH. Finally, the method is used to solve the classic 2D dry granular cliff collapse problem and to model dry granular material flow inside a rotary drum. The outcomes of the numerical simulation show good agreement with tabletop experiments and published results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号