首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lift coefficients, CL, of single bubbles in linear shear flows are measured to investigate effects of the bubble shape, the liquid velocity gradient and the fluid property on CL. The range of the Morton number, M, tested is from logM = − 6.6 to − 3.2. The shapes of bubbles are spherical and ellipsoidal. A correlation of bubble aspect ratio for single bubbles in infinite stagnant liquids proposed in our previous study can give good evaluations for bubbles in the linear shear flows. The CL of spherical bubbles at low bubble Reynolds numbers, Re, depend on the dimensionless shear rate Sr and Re and decrease with increasing Re. These characteristics agree with the Legendre-Magnaudet correlation. The use of a single dimensionless group such as Re, the Eötvös number, the Weber number and the Capillary number cannot correlate CL of non-spherical bubbles. The trend of the critical Re for the reversal of the sign of CL is the same as that for the onset of oscillation of bubble motion, which supports the mechanism proposed by Adoua et al., at least within the range of −6.6 ≤ logM ≤ −3.2. An experimental database of CL is provided for validation of available CL models and CFD.  相似文献   

2.
The effects of nozzle geometry on waterjet breakup at high Reynolds numbers   总被引:1,自引:0,他引:1  
Waterjet breakup is traditionally considered to follow the Ohnesorge classification. In this classification, high Reynolds number waterjets are considered to atomize quickly after discharge. By generating a constricted waterjet where the water flow stays detached all the way through the nozzle, we have observed the first wind-induced breakup mode at high Reynolds numbers. Such a peculiar behavior, however, was not observed in non-constricted waterjets. Our results indicate that, constricted jets do not follow the Ohnesorge classification, in contrast to the non-constricted waterjets. We discuss the impact of nozzle geometry on the characteristics of waterjets and support our discussion by numerical simulations.List of symbols Z Ohnesorge number - L water dynamic viscosity - air–water surface tension - L water density - g air density - dj waterjet diameter at the nozzle outlet - d0 nozzle capillary diameter - UL flow velocity - WeL Weber number based on water density - Weg Weber number based on air density - ReL Reynolds number  相似文献   

3.
In the present study, the characteristics of supersonic rectangular microjets are investigated experimentally using molecular tagging velocimetry. The jets are discharged from a convergent–divergent rectangular nozzle whose exit height is 500 μm. The jet Mach number is set to 2.0 for all tested jets, and the Reynolds number Re is altered from 154 to 5,560 by changing the stagnation pressure. The experimental results reveal that jet velocity decays principally due to abrupt jet spreading caused by jet instability for relatively high Reynolds numbers (Re > ~450). The results also reveal that the jet rapidly decelerates to a subsonic speed near the nozzle exit for a low Reynolds number (Re = 154), although the jet does not spread abruptly; i.e., a transition in velocity decay processes occurs as the Reynolds number decreases. A supersonic core length is estimated from the streamwise distribution of the centerline velocity, and the length is then normalized by the nozzle exit height and plotted against the Reynolds number. As a result, it is found that the normalized supersonic core length attains a maximum value at a certain Reynolds number near which the transition in the velocity decay process occurs.  相似文献   

4.
Linear stability is investigated of a uniform chain of equal spherical gas bubbles rising vertically in unbounded stagnant liquid at Reynolds number Re = 50–200 and bubble spacing s > 2.6 bubble radii. The equilibrium bubble positions are questioned for their stability with respect to small displacements in the vertical direction, parallel to the chain motion. The transverse displacements are not considered, and the chain is assumed to be laterally stable. The bubbles are subjected to three kinds of forces: buoyant, viscous, inviscid. The viscous and inviscid forces have both pairwise (local) and distant (nonlocal) components. The pairwise forces are expressed by the leading-order formulas known from the literature. The distant forces are expressed as a linear superposition of the pairwise forces taken over several farther neighbours. The stability problem is addressed on three different length scales corresponding to: discrete chain (microscale), continuous chain (mesoscale), bubbly chain flow (macroscale). The relevant governing equations are derived for each scale. The microscale equations are a set of ODE’s, the Newton force laws for the individual discrete bubbles. The mesoscale equation is a PDE for bubbles continuously distributed along a line, obtained by taking the continuum limit of the microscale equations. The macroscale equations are two PDEs, the mass and momentum conservation equations, for an ensemble of noninteracting mesoscale chains rising in parallel. This transparent two-step process (micro  meso  macro) is an alternative to the usual one-step averaging, in obtaining the macroscale equations from microscale information. Here, the scale-up methodology is demonstrated for 1D motion of bubbles, but it can be used for behaviour of 2D and 3D lattices of bubbles, drops, and solids.It is found that the uniform equilibrium spacing results from a balance between the attractive and repulsive forces. On all three length scales, the equilibrium is stabilized by the viscous drag force, and destabilized by the viscous shielding force (shielding instability). The inviscid forces are stability neutral and generate conservative oscillations and concentration waves. The stability region in the parameter plane s  Re is determined for each length scale. The stable region is relatively small on the microscale, larger on the mesoscale, and shrinks to zero on the macroscale where the bubbly chain flow is inherently unstable.The shielding instability is expected to occur typically in intermediate Re flows where the vertical bubble interactions dominate over the horizontal interactions. This new kind of instability is studied here in a great detail, likely for the first time. Its relation to the elasticity properties of bubbly suspension on different length scales is discussed too. The shielding force takes the form of a negative bulk modulus of elasticity of the bubbly mixture.  相似文献   

5.
An experimental study to evaluate the dynamic performance of three different types of cavitation bubbles is conducted. An ultrasonic transducer submerged into the working fluids of a scroll expander is utilised to produce cavitation bubbles and a high speed camera device is used to capture their behaviour. Three critical regions around the ultrasonic source, between the source and the solid boundary, and across the solid boundary were observed. Experimental results revealed that refrigerant bubbles sustain a continuous oscillatory movement, referenced as “wobbling effect”, without regularly collapsing. Analytical results indicate the influence of several factors such as surface tension/viscosity ratio, Reynolds number and Weber number which interpret that particular behaviour of the refrigerant bubbles. Within the refrigerant environment the bubbles obtain large Reynolds numbers and low Weber numbers. In contrast, within the lubricant and the water environment Weber number is significantly higher and Reynolds number substantially lower. The bubble radius and velocity alterations are accurately calculated during the cavitation process. Lubricant bubbles achieve the highest jet velocity while refrigerant bubbles having the lowest jet velocity are not considered as a destructive mean of cavitation for scroll expander systems.  相似文献   

6.
 An experimental technique for the measurement of the local slip velocity of spherical bubbles is reported. It is based on the measurement of the local liquid velocity by an electrodiffusional method, and the bubble velocity by a specially adapted LDA (Laser Doppler anemometer) with a short measuring volume. The bubble velocity is measured taking into account the shift between the bubble centre and the centre of the LDA measuring volume. The slip velocity is obtained by subtracting the liquid velocity from the bubble velocity at the point corresponding to the bubble centre. The technique is applicable for flows with high velocity gradients. Results of the slip velocity measurements in an upward bubbly flow at laminar pipe Reynolds numbers are presented. Received: 25 July 1996/Accepted: 13 April 1998  相似文献   

7.
The breakup mechanism and instability of a power law liquid jet are investigated in this study. The power law model is used to account for the non-Newtonian behavior of the liquid fluid. A new theoretical model is established to explain the breakup of a power law liquid jet with axisymmetric and asymmetric disturbances, which moves in a swirling gas. The corresponding dispersion relation is derived by a linear approximation, and it is applicable for both shear-thinning and shear-thickening liquid jets. Analysis results are calculated based on the temporal mode. The analysis includes the effects of the generalized Reynolds number, the Weber number, the power law exponent, and the air swirl strength on the breakup of the jet. Results show that the shear-thickening liquid jet is more unstable than its Newtonian and shear-thinning counterparts when the effect of the air swirl is taken into account. The axisymmetric mode can be the dominant mode on the power law jet breakup when the air swirl strength is strong enough, while the non-axisymmetric mode is the domination on the instability of the power liquid jet with a high We and a low Re n . It is also found that the air swirl is a stabilizing factor on the breakup of the power law liquid jet. Furthermore, the instability characteristics are different for different power law exponents. The amplitude of the power law liquid jet surface on the temporal mode is also discussed under different air swirl strengths.  相似文献   

8.
Averaged properties of bubbly liquids in the limit of large Reynolds and small Weber numbers are determined as functions of the volume fraction, mean relative velocity, and velocity variance of the bubbles using numerical simulations and a pair interaction theory. The results of simulations are combined with those obtained recently for sheared bubbly liquids [19] and the mixture momentum and continuity equations to propose a complete set of averaged equations and closure relations for the flows of bubbly liquids at large Reynolds and small Weber numbers.  相似文献   

9.
采用高速摄影技术结合阴影法,对静止水中垂直壁面附近上升单气泡运动进行实验研究,对比气泡尺度及气泡喷嘴与壁面之间的初始无量纲距离 ($S^{\ast}$)对气泡上升运动特性的影响,分析气泡与壁面碰撞前后,壁面效应与气泡动力学机制及能量变化规律.结果表明,对于雷诺数$Re \approx 580 \sim 1100$,无量纲距离$S^{\ast } <2 \sim3$时,气泡与壁面碰撞且气泡轨迹由无约束条件下的三维螺旋转变成二维之字形周期运动;当$S^{\ast } >2 \sim3$时,壁面效应减弱,有壁面约束的气泡运动与无约束气泡运动特性趋于一致.气泡与壁面碰撞前后,壁面效应导致横向速度峰值下降为原峰值的70%,垂直速度下降50%;气泡与壁面碰撞前,通过气泡中心与壁面距离($x/R$)和修正的斯托克斯数相关式可预测垂直速度的变化规律.上升气泡与壁面碰撞过程中,气泡表面变形能量单向传输给气泡横向动能,使得可变形气泡能够保持相对恒定的弹跳运动.提出了气泡在与壁面反复弹跳时的平均阻力系数的预测模型,能够很好地描述实验数据反映出的对雷诺数${Re}$、韦伯数${We}$和奥特沃斯数${Eo}$等各无量纲参数的标度规律.   相似文献   

10.
Laboratory experiments were carried out to study the effects of sand particles on circular sand–water wall jets. Mean and turbulence characteristics of sand particles in the sand–water wall jets were measured for different sand concentrations co ranging from 0.5% to 2.5%. Effects of sand particle size on the centerline sand velocity of the jets were evaluated for sand size ranging from 0.21 mm to 0.54 mm. Interesting results with the range of measurements are presented in this paper. It was found that the centerline sand velocity of the wall jets with larger particle size were 15% higher than the jets with smaller particle size. Concentration profiles in the vertical direction showed a peak value at x/d = 5 (where x is the longitudinal distance from the nozzle and d is the nozzle diameter) and the sand concentration decreased linearly for x/d > 5. Experimental results showed that the turbulence level enhanced from the nozzle to x/d = 10. For sand–water wall jets with a higher concentration (co = 1.5–2.5%), the turbulence intensity became smaller than the corresponding single-phase wall jets by 34% due to turbulent modulation. A modified logarithmic formulation was introduced to model the longitudinal turbulent intensity at the centerline and along the axis of the jet.  相似文献   

11.
DNS simulations of two-phase turbulent bubbly channel flow at Reτ = 180 (Reynolds number based on friction velocity and channel half-width) were performed using a stabilized finite element method (FEM) and a level set approach to track the air/water interfaces.  相似文献   

12.
An analysis is made for a gas bubble impulsively started to rise with a constant velocity in a quiescent liquid of infinite extent. Satisfactory results for the total drag force are obtained for spherical air bubbles in water, provided that the method developed here is applied at early times, the flow separation is negligible and the Reynolds number Re is sufficiently large.  相似文献   

13.
The wall void peaking distribution observed in an upward turbulent bubbly boundary layer along a flat plate is generated by bubbles that move towards the plate, come into contact with the wall and then slide along it. This transverse ‘migration’ has been studied using flow visualization, high speed video and particle tracking techniques to measure the trajectories of mono-disperse air bubbles at very low void fractions. Investigations have been performed at four Reynolds numbers in the range 280 < Reθ < 3000, covering both the laminar and turbulent regimes, with mono-disperse bubbles of mean equivalent diameter between 2 mm and 6 mm. Lagrangian statistics calculated from hundreds of trajectories show that the migration only occurs in the turbulent regime and for bubble diameters below some critical value: 3.5 mm < deqcrit < 4 mm. Above this size (We > 3), the interface deformation is such that bubbles do not remain at the wall, even when they are released at the surface. Also, bubble migration is shown to be non-systematic, to have a non-deterministic character in the sense that trajectories differ significantly, to increase with Reynolds number and to take place on a short time scale. A series of experiments with isolated bubbles demonstrates that these results are not influenced by bubble–bubble interactions and confirm that two-way coupling in the flow is limited. Flow visualizations show that the migration originates with the capture of bubbles inside the large turbulent structures of the boundary layer (‘bulges’). The bubbles begin to move towards the wall as they cross these structures, and the point at which they reach the wall is strongly correlated with the position of the deep ‘valleys’ which separate the turbulent ‘bulges’. The analysis of the mean Lagrangian trajectories of migrating bubbles confirms these observations. Firstly, the average time of migration calculated from these trajectories coincides with the mean transit time of the bubbles across the structures. Secondly, once the trajectories have been scaled by this transit time and the boundary layer thickness δ, they all have the same form in the region y/δ < 0.4, independent of the Reynolds number.  相似文献   

14.
An experimental study is performed on air-liquid-particle mixing, resulting from an air-particle mixture injected into a liquid flowing through a slender ladle. Flow visualization combined with image processing is employed to investigate the bubble and particle behavior at the nozzle outlet. Effort is directed to particle discrimination in both the liquid and the bubbles to determine particle distribution, which affects the mixing performance of gas bubbles, solid particles and liquid. A real-time movement of bubble and particle behavior can be visualized by means of image processing with the use of a slow-motion video recording. It is disclosed that the particles injected through the nozzle may stick on the inner surface of the gas bubble, break through the bubble surface, or mingle with the gas stream to form a two-phase jet, depending on the particle-to-gas mass flow rate ratio. It is observed that when a solid-gas two-phase jet penetrates deeper in the horizontal direction, the particles and bubbles rise along the vertical sidewall and simultaneously spread in the transverse direction, thus promoting a better liquid-particle mixing. The application of the slow-motion video recording results in quantitative evaluations of both the penetration depth of particles or of gas-particles from the injection nozzle and the velocity distribution along the sidewall.List of symbols B Width of water vessel, m - B n Nozzle location on bottom surface of water vessel, m - d o Diameter of a gas-particle injection nozzle, m - H Height of water vessel, m - H n Nozzle location on vertical surface of water vessel, m - L Penetration length of particles or of particles and gas from the nozzle, m - Q g Volumetric flow rate of gas, m3/s - Q l Volumetric flow rate of water, m3/s - Q s Volumetric flow rate of particle, m3/s - Re g Gas Reynolds number based on inner diameter of the air-particle injection nozzle - t Time, sec. - W Thickness of water vessel, m - x Transverse coordinate, m - y Longitudinal coordinate, m - Mass flow rate ratio of particles to gas Visiting scholar on leave from the Mechanical Engineering Department, Kagoshima University, Kagoshima, JapanThe work reported was supported by the National Science Foundation under the Grant No. CTS-8921584  相似文献   

15.
The gas–liquid flow in a rotor-stator spinning disc reactor, with co-feeding of gas and liquid, is studied for high gas volumetric throughflow rates and high gas/liquid volumetric flow ratios. High speed imaging and spectral analysis of pressure drop signals are employed to analyse the flow. Two mechanisms of bubble formation are observed, one due to gas overpressure leading to large irregular bubbles, and one due to liquid turbulent vortices leading to small, well-defined bubbles. The two mechanisms lead to three distinct gas dispersion regimes, distinguished by their characteristic oscillations in pressure drop. At low rotational Reynolds numbers (Reω < 0.4 · 106), in the gas spillover regime, the gas is dispersed as large bubbles only. Above this critical Reω, small bubbles are sheared off as well, thus forming a heterogeneous dispersion. At sufficiently high Reω, depending on the gas flow rate, the gas is homogeneously dispersed as small bubbles. The maximum gas flow that can be dispersed as small bubbles is linearly proportional to the local energy dissipation rate. The understanding of the bubble formation mechanisms and pressure signature allows prediction and detection of the prevailing hydrodynamic regime in scaled up spinning disc reactors and for different reaction fluids.  相似文献   

16.
Full scale bubbly flow experiments were performed on a 6 m flat bottom survey boat, measuring the void fraction, bubble velocity and size distributions as the bubbles naturally entrained at the bow of the boat interact with the boat’s boundary layer. Double-tip sapphire optical probes capable of measuring bubbles down to 50 μm in diameter were specifically designed and built for this experiment. The probes were positioned under the hull at the bow near the bubble entrainment region and at the stern at the exit of the bottom flat plate. Motorized positioners were used to vary the probe distance to the wall from 0 to 50 mm. The experiments were performed in fresh water (Coralville Lake, IA) and salt water (Panama City Beach, FL), at varying velocities with most data analysis performed at 10, 14 and 18 knots. The results indicate that the bubbles interact significantly with the boundary layer. At low velocity in fresh water, bubble accumulation under the hull and coalescence are evident by the presence of large bubbles at the stern. At high speeds bubble breakup dominates and very small bubbles are produced near the wall. It is also observed that salt water inhibits coalescence, even at low boat speeds. The void fraction increases with speed beyond 10 knots and peaks near the wall. Bubble velocities show slip with the wall at all speeds and exhibit large RMS fluctuations, increasing near the wall.  相似文献   

17.
This paper presents results of experiments conducted to investigate the effects of Reynolds number and upstream wall roughness on the turbulence structure in the recirculation and recovery regions of a smooth forward facing step. A reference smooth upstream wall and a rough upstream wall made from sand gains were studied. For the smooth upstream wall, experiments were conducted at Reynolds number based on the freestream velocity and step height (h), Reh = 4940, 8400 and 8650. The rough wall experiments was performed at Reh = 5100, 8200 and 8600 to closely match the corresponding Reh experiment over the smooth wall. The reattachment lengths in the smooth wall experiments were Lr/h ≈ 2.2, but upstream roughness significantly reduced these values to Lr/h ≈ 1.3. The integral scales within the recirculation bubbles were independent of upstream roughness and Reynolds number; however, upstream roughness significantly increased the spatial coherence and integral scales outside the recirculation bubbles and in the recovery region. Irrespective of the upstream wall condition, the redeveloping boundary layer recovered at 25h from reattachment.  相似文献   

18.
We present a numerical investigation of breakup modes of an axisymmetric, laminar compound jet of immiscible fluids, which flows in a coflowing immiscible outer fluid. We use a front-tracking/finite difference method to track the unsteady evolution and breakup of the compound jet, which is governed by the Navier–Stokes equations for incompressible Newtonian fluids. Numerical results show that depending on parameters such as the Reynolds number Re (in the range of 5–30) and Weber Number We (in the range of 0.1–0.7), based on the inner jet radius and inner fluid properties, the compound jet can break up into drops in various modes: inner dripping–outer dripping (dripping), inner jetting–outer jetting (jetting), and mixed dripping–jetting. Decreasing Re or increasing We promotes the jetting mode. The transition from dripping to jetting is also strongly affected by the velocity ratios, U21 (intermediate to inner velocities) and U31 (outer to inner velocities). Increasing U21 makes the inner jet thinner and stretches the outer jet and thus promotes jetting. In contrast, increasing U31 thins the outer jet, and thus, when the inner jet is dripping, the outer jet can break up into drops in the mixed dripping–jetting mode. Continuously increasing U31 results in thinning both inner and outer jets and thus produces small drops in the jetting mode. In addition, starting from dripping, a decrease in the interfacial tension ratio of the outer to inner interfaces results in the mixed dripping–jetting and jetting modes. These modes produce various types of drops: simple drops, and compound drops with a single inner drop (single-core compound drops) or a few inner drops (multi-core compound drops).  相似文献   

19.
Steady irrotational flow of inviscid liquid of density ρl around a spherical gas bubble which lies on the axis of a cylindrical pipe is investigated using the analysis of Smythe (Phys. Fluids 4 (1961) 756). The bubble radius b=qa is assumed small compared to the pipe radius a, and the interfacial tension between gas and liquid is γ. Far from the bubble, in the frame in which the bubble is at rest, the liquid velocity along the pipe is v0, whereas the liquid velocity at points on the wall closest to the bubble is Uzw=v0(1+1.776q3+⋯). The decrease in wall pressure as the bubble passes is therefore Δp=1.776ρlv02q3. When the Weber number W=2bv02ρl/γ is small, the bubble deforms into an oblate spheroid with aspect ratio χ=1+9W(1+1.59q3)/64. If the fluid viscosity μ is non-zero, and the Reynolds number Re=2v0ρlb/μ is large, a viscous boundary layer develops on the walls of the pipe. This decays algebraically with distance downstream of the bubble, and an exponentially decaying similarity solution is found upstream. The drag D on the bubble is D=12πμv0b(1−2.21Re−1/2)(1+1.59q3)+7.66μv0bRe1/2q9/2, larger than that given by Moore (J. Fluid Mech. 16 (1963) 161) for motion in unbounded fluid. At high Reynolds numbers the dissipation within the viscous boundary layers might dominate dissipation in the potential flow away from the pipe walls, but such high Reynolds numbers would not be achieved by a spherical air bubble rising in clean water under terrestrial gravity.  相似文献   

20.
The effect of sidewalls on rectangular jets   总被引:1,自引:0,他引:1  
An experimental study is presented regarding the influence of sidewalls on the turbulent free jet flow issuing from a smoothly contracting rectangular nozzle of aspect ratio 15. “Sidewalls” are two parallel plates, flush with each of the slots’ short sides, practically establishing bounding walls extending the nozzle sidewalls in the downstream direction. Measurements of the streamwise and lateral velocity mean and turbulent characteristics have been accomplished, with an x-sensor hot wire anemometer, up to an axial distance of 35 nozzle widths, for jets with identical inlet conditions with and without sidewalls. Centreline measurements for both configurations have been collected for three Reynolds numbers, ReD = 10,000, 20,000 and 30,000. For ReD = 20,000 measurements in the transverse direction were collected at 13 different downstream locations in the range, x = 0–35 nozzle widths, and in the spanwise direction at three different downstream locations, x = 2, 6 and 25 nozzle widths.Results indicate that, the two jet configurations (with and without sidewalls) produce statistically different flow fields. Sidewalls do not lead to the production of a 2D flow field as undulations in the spanwise mean velocity distribution indicate. They do increase the two-dimensionality of the jet increasing the longevity of 2D spanwise rollers structures formed in the initial stages of entrainment, which are responsible for the convection of longitudinal momentum towards the outer field, establishing larger streamwise mean velocities at the jet edges. In the near field, up to 25 nozzle widths, lower outward lateral velocities in the presence of the sidewalls are held responsible for the decrease of turbulent terms including rms of velocity fluctuations and Reynolds stresses. Skewness factors increase monotonically across the shear layers from negative values to positive forming sharp peaks at the outer edges of the jet, illustrative of the presence of well defined 2D roller structures in the jet with sidewalls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号