首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ab initio calculations with full electron correlation by the perturbation method to second order and hybrid density functional theory calculations by the B3LYP method utilizing the 6-31G(d), 6-311+G(d, p), and 6-311+G(2d, 2p) basis sets have been carried out for the XNCO and XOCN (X = H, F, Cl, Br) molecules. From these calculations, force constants, vibrational frequencies, infrared intensities, Raman activities, depolarization ratios, and structural parameters have been determined and compared to the experimental quantities when available. By combining previously reported rotational constants for HNCO, ClNCO and BrNCO with the ab initio MP2/6-311+G(d, p) predicted structural values, adjusted r0 parameters have been obtained. The r0 values for BrNCO are: r(BrN) = 1.857(5); r(NC) = 1.228(5); r(CO) = 1.161(5) Å; BrNC = 117.5(5) and NCO = 172.3(5)°. For ClNCO the determined r0 parameters are in excellent agreement with the previously determine rs values, whereas those for HNCO the HNC angle is larger with a value of 126.3(5)° compared to the previous reported value of 123.9(17)°. However, considering the relatively large uncertainty in the value given initially the two results are in near agreement. Structural parameters are also estimated for FNCO and XOCN (X = H, F, Cl, Br). The centrifugal distortion constants have been calculated and are compared to the experimentally (XNCO: X = H, Cl, Br) determined values. Predicted values for the barriers of linearity are given for both the XNCO (X = H, F, Cl, Br) molecules and the results were compared to the corresponding isothiocyanate molecules. The predicted frequencies for the fundamentals of the XNCO molecules compare favorably to the experimental values but some of the predicted intensities differ significantly from those in the observed spectra. The two OCN bends for HOCN have been assigned and the frequencies for the two corresponding fundamentals of DOCN are predicted.  相似文献   

2.
Ab initio global adiabatic as well as quasidiabatic potential energy surfaces for the ground and the first excited electronic states of the H+ + CO system have been computed as a function of the Jacobi coordinates (Rrγ) using Dunning’s cc-pVTZ basis set at the internally contracted multi-reference (single and double) configuration interaction level of accuracy. In addition, nonadiabatic coupling matrix elements arising from radial motion, mixing angle and coupling potential have been computed using the ab initio procedure [Simah et al. (1999) [66]] for the purpose of dynamics study. The geometrical properties corresponding to the minimum energy of the bound HCO+ and HOC+ isomers have been obtained and compared with those predicted by previous theoretical and experimental results. The HCO+ has been found to be more stable than the HOC+. The minimum energy pathway in the ground electronic state for the isomerization process, HCO+ ? HOC+ has also been obtained as a function of γ.  相似文献   

3.
(Liquid + liquid) equilibrium (LLE) data for ternary system {heptane (1) + m-xylene (2) + N-formylmorpholine (3)} have been determined experimentally at temperatures ranging from 298.15 K to 353.15 K. Complete phase diagrams were obtained by determining solubility and tie-line data. Tie-line compositions were correlated by Othmer-Tobias and Bachman methods. The universal quasichemical activity coefficient (UNIQUAC) and The non-random two liquids equation (NRTL) were used to correlate the phase equilibrium in the system using the interaction parameters determined from experimental data. It is found that UNIQUAC and NRTL used for LLE could provide a good correlation. Distribution coefficients, separation factors, and selectivity were evaluated for the immiscibility region.  相似文献   

4.
Liquid–liquid equilibria of systems water (A) + CiEj surfactant (B) + n-alkane (C) have been modeled by a mass-action law model previously developed and so far successfully applied to a series of binary water + CiEj systems and to the ternary system water + C4E1 + n-dodecane. These calculations provide the basis for the presented modeling. The aqueous systems give information about the association constants and the χAB-parameter of the Flory–Huggins theory and the ternary C4E1-system provides universal temperature functions for the χAC- and the χBC-parameter. The three-phase equilibrium for seven ternary CiEj systems (i = 6–12, j = 3–6) has been calculated by fitting one additional parameter for each of both temperature functions to the characteristic “fish-tail” point. The agreement with the experimental data is reasonably well. For systems with very small three-phase areas the results can considerably be improved by individual temperature functions that incorporate the experimental temperature maximum of the “fish” into the parameter fit. Based on the parameters of the system water + C8E4 + n-C8H18 the “fish-shaped” phase diagram of the system water + C8E4 + n-C14H30 was predicted reasonably well.  相似文献   

5.
Spin-polarized density functional theory calculation is employed to study the adsorption and dissociation of NO2 molecule on Cu(1 1 1) surface. It is shown that the most favorable adsorption structure is the NO2 (T,T-O-,O′-nitrito) configuration which has an adsorption energy of −1.49 eV. The barriers for step-wise NO2 dissociation reaction, NO2(g) → N(a) + 2O(a), are 1.05 (for O–N–O bond activation), and 2.08 eV (for N–O bond activation), respectively, and the entire process is 0.6 eV exothermic. The energetics of single N–O dissociation with and without the presence of N atom or O atom on the surface are also calculated. The results indicate that in the presence of O atom on Cu(1 1 1) surface would raise the N–O dissociation barrier, whereas in the presence of N atom decrease it. The interaction nature between adsorbates and substrate is analyzed by the local density of states (LDOS) calculation.  相似文献   

6.
Total vapour pressures, measured at the temperature 313.15 K, are reported for the ternary mixture (N,N-dimethylacetamide + methanol + water), and for binary constituents (N,N-dimethylacetamide + methanol) and (N,N-dimethylacetamide + water). The present results are compared with previously obtained data for binary mixtures (amide + water) and (amide + methanol), where amide=N-methylformamide, N,N-dimethylformamide, N-methyl-acetamide, 2-pyrrolidinone and N-methylpyrrolidinone. Moreover, it was found that excess Gibbs free energy of mixing for binary mixtures varies roughly linearly with the molar volume of amide.  相似文献   

7.
Liquid–liquid equilibrium measurements for four binary N,N-dimethylformamide + hydrocarbon (hexane, heptane, octane, and cyclohexane) systems were performed using a laser scattering technique. The experimentally determined cloud points were satisfactorily correlated with two local composition models (NRTL, and Tsuboka–Katayama's modification of the Wilson equation). In addition, the prediction of LLE by means of the modified UNIFAC (Dortmund) model was also tested.  相似文献   

8.
H2O + Ni(NO3)2 binary system were investigated in the temperature range from −25 °C to 55 °C. The solid-liquid equilibria of the ternary system H2O + Fe(NO3)3 + Ni(NO3)2 were studied using a synthetic method based on conductivity measurements. Tow isotherms were established at 0 °C and 30 °C, and the appearing stable solid phases are iron nitrate nonahydrate (Fe(NO3)3·9H2O), iron nitrate hexahydrate (Fe(NO3)3·6H2O), nickel nitrate hexahydrate (Ni(NO3)2·6H2O) and nickel nitrate tetrahydrate (Ni(NO3)2·4H2O).  相似文献   

9.
Isobaric vapor-liquid equilibrium (VLE) data for acetic acid + water, acetic acid + n-propyl acetate, acetic acid + iso-butyl acetate, acetic acid + water + n-propyl acetate, acetic acid + water + iso-butyl acetate are measured at 101.33 kPa with a modified Rose still. The nonideal behavior in vapor phase caused by the association of acetic acid are corrected by the chemical theory and Hayden-O’Connell method, and analyzed by calculating the second virial coefficients and apparent fugacity coefficients. The VLE data for acetic acid + water, acetic acid + n-propyl acetate, and acetic acid + iso-butyl acetate are correlated through the NRTL and UNIQUAC models using the nonlinear least square method. The obtained NRTL model parameters are used to predict the ternary VLE data. The ternary predicted values obtained in this way agree well with the experimental values.  相似文献   

10.
A systematic thermodynamic and kinetic study of the entire SFxCl (x = 0-5) series has been carried out. High-level quantum chemical composite methods have been employed to derive enthalpy of formation values from calculated atomization and isodesmic energies. The resulting values for the SCl, SFCl, SF2Cl(C1), SF3Cl(Cs), SF4Cl(Cs) and SF5Cl molecules are 28.0, −36.0, −64.2, −134.3, −158.2 and −237.1 kcal mol−1. A comparison with previous experimental and theoretical values is presented. Statistical adiabatic channel model/classical trajectory, SACM/CT, calculations of selected complex-forming and recombination reactions of F and Cl atoms with radicals of the series have been performed between 200 and 500 K. The reported rate coefficients span over the normal range of about 6 × 10−12 and 5 × 10−11 cm3 molecule−1 s−1 expected for this type of barrierless reactions.  相似文献   

11.
The vapour pressure of binary mixtures of hydrogen sulphide with ethane, propane, and n-butane was measured at T = 182.33 K covering most of the composition range. The excess Gibbs free energy of these mixtures has been derived from the measurements made. For the equimolar mixtures for (H2S + C2H6), (820.1 ± 2.4) J · mol−1 for (H2S + C3H8), and (818.6 ± 0.9) J · mol−1 for (H2S + n-C4H10). The binary mixtures of H2S with ethane and with propane exhibit azeotropes, but that with n-butane does not.  相似文献   

12.
Bubble point temperatures at 95.5 kPa, over the entire composition range, are measured for the binary mixtures formed by m-cresol with: methanol, ethanol, 1-propanol, 2-propanol, and n-, iso-, sec-, and tert-butanols - using a Swietoslawski-type ebulliometer. The liquid phase composition - bubble point temperature measurements are well represented by the Wilson model. (Vapor + liquid) equilibria predicted from the model are presented.  相似文献   

13.
Isobaric vapor–liquid equilibrium (VLE) data of the systems acetic acid + N,N-dimethylformamide (DMF), acetic acid + dimethyl sulfoxide (DMSO), DMSO + water, water + acetic acid + DMF, and water + acetic acid + DMSO have been measured at 13.33 kPa by using an improved Rose equilibrium still. The association of acetic acid in vapor phase has been considered, and the nonideality of vapor phase was accounted for using the Hayden–O’Connell (HOC) method. The experimental binary data have been correlated by the NRTL, Wilson and van Laar models. The NRTL model parameters obtained from the binary data have been used to predict the ternary VLE data. The ternary predicted values obtained in this way agree well with the experimental values.  相似文献   

14.
The reduction of sulfur content in gasoline and diesel fuel is a great environmental concern to reduce the motor vehicle emissions. Oxidative desulfurization using acetonitrile biphasic system has received much attention in recent years. The oxidative desulfurization can be oxidized the unreactive sulfur contents in the hydrodesulfurization and removed effectively. For the oxidative desulfurization process design and development, liquid–liquid equilibria (LLE) for acetonitrile biphasic systems are needed as fundamental information. In our previous work, LLE for acetonitrile + n-octane and + n-decane systems have been reported. In this work, therefore, LLE for acetonitrile + n-hexadecane system was measured. Furthermore, NRTL equation was applied to correlate the LLE for these three acetonitrile + n-alkane systems.  相似文献   

15.
(Solid + liquid) phase equilibria (SLE) of (n-hexadecane, or n-octadecane + 3-methylpentane, or 2,2-dimethylbutane, or benzene) at very high pressures up to about 1.0 GPa have been investigated at the temperature range from T = (293 to 353) K. The thermostated apparatus for the measurements of transition pressures from the liquid to the solid state in two component isothermal solutions was used. The pressure-temperature-composition relation of the high pressure (solid + liquid) phase equilibria, polynomial based on the general solubility equation at atmospheric pressure was satisfactorily used. Additionally, the SLE of binary systems (n-hexadecane, or n-octadecane + 3-methylpentane, or 2,2-dimethylbutane, or benzene, or n-hexane or cyclohexane) at normal pressure was discussed. The results at high pressures were compared for every system to these at normal pressure. The influence of the size and shape effects on the solubility at 0.1 MPa and high pressure up to 600 MPa was discussed.The main aim of this work was to predict the mixture behaviour using only pure components data and cubic equation of state in the wide range of pressures, far above the pressure range which cubic equations of state are normally applied to. The fluid phase behaviour is described by the corrected SRK-EOS and the van der Waals one fluid mixing rules.  相似文献   

16.
Experimental solubilities of betulin in mixed solvents of chloroform (1) + methanol (2) were determined at T = (278.2, 288.2, 293.2, 298.2, 308.2 and 313.2) K. The solubilities of betulin in mixed solvents of chloroform (1) + methanol (2) increase with increasing of temperature. The curves of solubility versus solvent composition on solute-free basis went through a maximum. Experimental data of solubilities were correlated with a three-parameter equation. In addition, three crystals of betulin obtained in different compositions of chloroform (1) + methanol (2) mixtures were characterized by scanning electron microscope (SEM) and differential scanning calorimetry (DSC).  相似文献   

17.
Vapor–liquid equilibria (VLE) for the n-hexane + 2-isopropoxyethanol and n-heptane + 2-isopropoxyethanol (at 60, 80, and 100 kPa) systems were measured. Two systems present positive deviations from ideal behavior. And the system n-heptane + 2-isopropoxyethanol shows a minimum boiling azeotrope at all pressures. Experimented data have been correlated with the two term virial equation for vapor-phase fugacity coefficients and the three suffix Margules equation, Wilson, NRTL, and UNIQUAC equations for liquid-phase activity coefficients. Experimental VLE data show excellent agreements with models.  相似文献   

18.
Isothermal vapor–liquid equilibrium data at 333.15 K are measured for the binary system tert-amyl methyl ether + ethanol and tert-amyl methyl ether + 2,2,4-trimethylpentane and for ternary system tert-amyl methyl ether + ethanol + 2,2,4-trimethylpentane by using headspace gas chromatography. The experimental vapor–liquid equilibrium data were correlated with GE models (Margules, van Laar, Wilson, NRTL, UNIQUAC) equations. The excess volume and deviations in molar refractivity data are also reported for the same binary and ternary systems at 298.15 K. These data were correlated with the Redlich–Kister equation for the binary systems and the Cibulka equation for the ternary system, respectively. The experimental ternary excess volume and deviations in molar refractivity data, were also compared with the estimated values from the binary contribution models of Tsao–Smith, Kohler, Rastogi and Radojkovi?.  相似文献   

19.
Vapor–liquid equilibria (VLE) for the n-heptane + ethylene glycol monopropyl ether and n-octane + ethylene glycol monopropyl ether systems were measured. Isobaric VLE measurements of the associating fluid mixtures were conducted at several pressures (60 kPa, 80 kPa and 100 kPa) using Fischer VLE 602 equipment. The experimental data were correlated using a two-term virial equation for vapor-phase fugacity coefficients and the three suffix Margules equation, Wilson, NRTL, and UNIQUAC models for liquid-phase activity coefficients. The results show good agreement with the variety of models.  相似文献   

20.
(Liquid + liquid) equilibrium (LLE) data for the {water + acetic acid + dibasic esters mixture (dimethyl adipate + dimethyl glutarate + dimethyl succinate)} system have been determined experimentally at T = (298.2, 308.2, and 318.2) K. Complete phase diagrams were obtained by determining solubility curve and tie-line data. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The UNIFAC model was used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data between CH2, CH3COO, CH3, COOH, and H2O functional groups. Distribution coefficients and separation factors were compared with previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号