首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
An experimental study was performed on a two-phase critical flow with a non-condensable gas at high pressure conditions. Experimental data for the critical flow rates were generated by using sharp-edged stainless steel pipes with an inner diameter of 10.9 mm, a thickness of 3.2 mm, and a length of 1000 mm. The test conditions were varied by using the stagnation pressures of 4.0, 7.0, and 10.0 MPa, water subcoolings of 0.0, 20.0, and 50.0 °C, and nitrogen gas flow rates of 0.0–0.22 kg/s. The experimental results show that the critical mass flux decreases rapidly with an increase of the volumetric non-condensable gas fraction. Also the critical mass flux increases with an increase of the stagnation pressure and a decrease of the stagnation temperature. An empirical correlation of the non-dimensional critical mass flux, which is expressed as an exponential function of the non-condensable gas fraction of the volumetric flow, is obtained from the experimental data.  相似文献   

2.
Flow pattern, void fraction and slug rise velocity on counter-current two-phase flow in a vertical round tube with wire-coil inserts are experimentally studied. Flow pattern and slug rise velocity are measured visually with a video camera. The void fraction is measured by the quick-closing valve method. Four kinds of coils with different coil pitches and coil diameters are used as inserts. The presence of wire-coil inserts induces disturbance into gas and liquid flows so that the shape and motion of gas slug or bubbles in a wire-coil inserted tube are quite different from those observed in a smooth tube without insert. The bubbly flow occurs in the low gas superficial velocity region in the wire-coil inserted tube, while the slug or churn/annular flow only appears in the smooth tube without insert over the all test range. The measured slug rise velocity in the wire-coil inserted tube is higher than that in the smooth tube. With modified mean flow velocity calculated with core area, the slug rise velocity in wire-coil tube inserted is in good agreement with Nicklin's correlation. The void fraction in a wire-coil inserted tube is lower than that in a smooth tube in the range of high gas superficial velocities. By introducing a simple assumption on considering the effective flowing area, the measured void fractions in a wire-coil inserted tube are in relatively good agreement with the predicted result based on the drift flux model proposed by others with the correlation for slug rise velocity given by others when the coil pitch is dense.  相似文献   

3.
The bubble and liquid turbulence characteristics of air–water bubbly flow in a 200 mm diameter vertical pipe was experimentally investigated. The bubble characteristics were measured using a dual optical probe, while the liquid-phase turbulence was measured using hot-film anemometry. Measurements were performed at six liquid superficial velocities in the range of 0.2–0.68 m/s and gas superficial velocity from 0.005 to 0.18 m/s, corresponding to an area average void fraction from 1.2% to 15.4%. At low void fraction flow, the radial void fraction distribution showed a wall peak which changed to a core peak profile as the void fraction was increased. The liquid average velocity and the turbulence intensities were less uniform in the core region of the pipe as the void fraction profile changed from a wall to a core peak. In general, there is an increase in the turbulence intensities when the bubbles are introduced into the flow. However, a turbulence suppression was observed close to the wall at high liquid superficial velocities for low void fractions up to about 1.6%. The net radial interfacial force on the bubbles was estimated from the momentum equations using the measured profiles. The radial migration of the bubbles in the core region of the pipe, which determines the shape of the void profile, was related to the balance between the turbulent dispersion and the lift forces. The ratio between these forces was characterized by a dimensionless group that includes the area averaged Eötvös number, slip ratio, and the ratio between the apparent added kinetic energy to the actual kinetic energy of the liquid. A non-dimensional map based on this dimensionless group and the force ratio is proposed to distinguish the conditions under which a wall or core peak void profile occurs in bubbly flows.  相似文献   

4.
The aim of the present study is to investigate stratified downward gas–liquid pipe flow with a non-intrusive measurement technique that is based on a borescope connected to a digital video camera. The borescope-based technique enables to determine the instantaneous cross-sectional distribution of both phases within the pipe. Water and air were used as working fluids. Quantitative data was extracted from sequences of recorded video images by applying a developed data processing technique for instantaneous gas–liquid interface boundaries determination. Experiments were performed for a wide range of downward pipe inclinations and gas and liquid flow rates. The instantaneous and time-average cross-sectional holdup for each set of flow parameters was calculated. Particular attention was given to the study of the interface shape that in many occasions was not flat and was characterized by the penetration of the liquid along the pipe periphery. Temporal variation of the surface elevation was also studied and various regimes characterizing interfacial waves were defined using both the recorded time series of the instantaneous depth of the water layer and the Fourier analysis of those records.  相似文献   

5.
6.
A comparison of the performance of 68 void fraction correlations based on unbiased data set (2845 data points) covering wide range of parameters than previous assessments was made. A comprehensive literature search was undertaken for the available void fraction correlations and experimental void fraction data. After systematically refining the data, the performance of the correlations in correctly predicting the diverse data sets was evaluated. Comparisons between the correlations were made and appropriate recommendations drawn. The analysis showed that most of the correlations developed are very restricted in terms of handling a wide variety of data sets. Based on the observations made, an improved void fraction correlation which could acceptably handle all data sets regardless of flow patterns and inclination angles was suggested. It was shown that this correlation has the best predictive capability than all the correlations considered in this study.  相似文献   

7.
Experimental work on two-phase vertical upward flow was carried out using a 19 mm internal diameter, 7 m long pipe and studying the time series of cross-sectional average void fractions and pressure gradient which were obtained simultaneously. With the aid of a bank of published data in which the pipe diameter is the range from 0.5 to 70 mm, the effect of pipe diameter on flow characteristics of two-phase flow is investigated from various aspects. Particularly, the work focuses on the periodic structures of two-phase flow. Average film thicknesses and the gas flow rate where slug/churn and churn/annular flow transitions occur all increase as the diameter of the pipe becomes larger. On the other hand, the pressure gradients, the frequencies of the periodic structures and the velocities of disturbance waves decrease. The velocity of disturbance waves has been used to test the model of Pearce (1979). It is found that the suggested value of Pearce coefficient 0.8 is reasonable for lower liquid flow rates but becomes insufficient for higher liquid flow rates.  相似文献   

8.
Two novel complementing methods that enable experimental study of gas and liquid phases distribution in two-phase pipe flow are considered. The first measuring technique uses a wire-mesh sensor that, in addition to providing data on instantaneous phase distribution in the pipe cross-section, also allows measuring instantaneous propagation velocities of the phase interface. A novel algorithm for processing the wire-mesh sensor data is suggested to determine the instantaneous boundaries of gas–liquid interface. The second method applied here takes advantage of the existence of sharp visible boundaries between the two phases. This optical instrument is based on a borescope that is connected to a digital video camera. Laser light sheet illumination makes it possible to obtain images in the illuminated pipe cross-section only. It is demonstrated that the wire-mesh-derived results based on application of the new algorithm improve the effective spatial resolution of the instrument and are in agreement with those obtained using the borescope. Advantages and limitations of both measuring techniques for the investigations of cross-sectional instantaneous phase distribution in two-phase pipe flows are discussed.  相似文献   

9.
The flow structure in a developing air-water two-phase flow was investigated experimentally along a large vertical pipe (inner diameter, Dh: 0.48 m, ratio of length of flow path L to Dh: about 4.2). Two air injection methods (porous sinter injection and nozzle injection) were adopted to realize an extremely different flow structure in the developing region. The flow rate condition in the test section was as follows: superficial air velocity: 0.02–0.87 m/s (at atmospheric pressure) and superficial water velocity: 0.01–0.2 0.01–0.2 m/s, which covers the range of bubbly to slug flow in a small-scale pipe (Dh about 0.05 m).

No air slugs occupying the flow path were recognized in this experiment regardless of the air injection methods even under the condition where slug flow is realized in the small-scale pipe. In the lower half of the test section, the axial distribution of sectional differential pressure and the radial distribution of local void fraction showed peculiar distributions depending on the air injection methods. However, in the upper half of the test section, the effects of the air injection methods are small in respect of the shapes of the differential pressure distribution and the phase distribution. The comparison of sectional void fraction near the top of the test section with Kataoka's correlation indicated that the distribution parameter of the drift-flux model should be modeled including the effect of Dh and the bubble size distribution is affected by the air injection methods. The bubble size distribution is considered to be affected also by L/Dh based on comparison of results with Hills' correlation.  相似文献   


10.
In this paper, the basic equations of two-phase liquid metal flow in a magnetic field are derived, and specifically, two-phase liquid metal MHD flow in a rectangular channel is studied, and the expressions of velocity distribution of liquid and gas phases and the ratioK 0 of the pressure drop in two-phase MHD flow to that in single-phase are derived. Results of calculation show that the ratioK 0 is smaller than unity and decreases with increasing void fraction and Hartmann number because the effective electrical conductivity in the two-phase case decreases. The Project is supported by the National Natural Science Foundation of China.  相似文献   

11.
Due to the similarities between large amplitude roll waves and slug flow in two-phase gas–liquid pipe flow, a slug tracking scheme is presented with the addition of a simplified model for roll waves. The waves are treated in a similar way to slugs, modelled as objects moving at the wave velocity and with a pressure variation across them. The two-fluid model is solved on a stationary staggered grid in stratified sections between moving waves and slugs. The model is dynamic meaning that the growth and decay of waves and slugs can be simulated. The wave model implementation within the tracking scheme is discussed and demonstrated in comparison to existing experimental data on wave velocities and averaged pressure drops. The results from the tracking scheme compared well to the experiments when waves were initiated with the experimental frequency. Wave initiation remains as a modelling challenge.  相似文献   

12.
The generation of slugs was studied for air–water flow in horizontal 0.0763 m and 0.095 m pipes. The emphasis was on high liquid rates (uLS ? 0.5 m/s) for which slugs are formed close to the entry and the time intervals between slugs are stochastic. A “fully developed” slug flow is defined as consisting of slugs with different sizes interspersed in a stratified flow with a height slightly larger than the height, h0, needed for a slug to be stable. Properties of this “fully developed” pattern are discussed. A correlation for the frequency of slugging is suggested, which describes our data as well as the data from other laboratories for a wide range of conditions. The possibility is explored that there is a further increase of slug length beyond the “fully developed” condition because slugs slowly overtake one another.  相似文献   

13.
The analysis of two-phase flow in porous media begins with the Stokes equations and an appropriate set of boundary conditions. Local volume averaging can then be used to produce the well known extension of Darcy's law for two-phase flow. In addition, a method of closure exists that can be used to predict the individual permeability tensors for each phase. For a heterogeneous porous medium, the local volume average closure problem becomes exceedingly complex and an alternate theoretical resolution of the problem is necessary. This is provided by the method of large-scale averaging which is used to average the Darcy-scale equations over a region that is large compared to the length scale of the heterogeneities. In this paper we present the derivation of the large-scale averaged continuity and momentum equations, and we develop a method of closure that can be used to predict the large-scale permeability tensors and the large-scale capillary pressure. The closure problem is limited by the principle of local mechanical equilibrium. This means that the local fluid distribution is determined by capillary pressure-saturation relations and is not constrained by the solution of an evolutionary transport equation. Special attention is given to the fact that both fluids can be trapped in regions where the saturation is equal to the irreducible saturation, in addition to being trapped in regions where the saturation is greater than the irreducible saturation. Theoretical results are given for stratified porous media and a two-dimensional model for a heterogeneous porous medium.  相似文献   

14.
We perform DNS of passive scalar transport in low Reynolds number turbulent channel flow at Schmidt numbers up to Sc = 49. The high resolutions required to resolve the scalar concentration fields at such Schmidt numbers are achieved by a hierarchical algorithm in which only the scalar fields are solved on the grid dictated by the Batchelor scale. The velocity fields are solved on coarser grids and prolonged by a conservative interpolation to the fine-grid.

The trends observed so far at lower Schmidt numbers Sc  10 are confirmed, i.e. the mean scalar gradient steepens at the wall with increasing Schmidt number, the peaks of turbulent quantities increase and move towards the wall. The instantaneous scalar fields show a dramatic change. Observable structures get longer and thinner which is connected with the occurrence of steeper gradients, but the wall concentrations penetrate less deeply into the plateau in the core of the channel.

Our data shows that the thickness of the conductive sublayer, as defined by the intersection point of the linear with the logarithmic asymptote scales with Sc−0.29. With this information it is possible to derive an expression for the dimensionless transfer coefficient K+ which is only dependent on Sc and Reτ. This expression is in full accordance to previous results which demonstrates that the thickness of the conductive sublayer is the dominating quantity for the mean scalar profile.  相似文献   


15.
A numerical analysis is presented for buoyancy driven flow of a Newtonian fluid contained in a two dimensional (R, ) hemispherical enclosure for high Rayleigh (Ra) numbers. It is assumed that the flow is driven by the uniformly distributed internal heat sources within the enclosure. All walls of the cavity are maintained at a constant temperature. Finite volume based SIMPLER algorithm has been used for the present analysis. Discretised governing equations, in primitive variables, are solved by a combination of Three Diagonal Matrix Algorithm (TDMA) and Point Successive Overrelaxation (PSOR) method. A benchmark solution prepared for a Ra number range of 107 to 1012 and Prandtl (Pr) number 7.0, shows an excellent agreement with the experimental results obtained from the open literature.  相似文献   

16.
This paper examines the effects of small upward inclinations on the formation of roll waves and the properties of fully developed roll waves at high pressure conditions. A total of 984 experiments were conducted at six positive pipe inclinations θ = 0.00°, 0.10°, 0.25°, 1.00°, 2.50° and 5.00° using a 25 m long 10 cm i.d. pipe. Sulfur hexafluoride (SF6) was used at 8 bara giving a gas density of 50 kg/m3. Two independent mechanisms for the formation of roll waves were identified; (1) interaction between 2D shallow water waves and (2) a visible long wavelength instability of the stratified layer. Viscous long wavelength linear stability analysis predicted the critical liquid flow rate and liquid height for the initiation of roll waves when roll waves were formed due to the second mechanism. A simple equation from shallow water wave theory agreed with measurements for critical liquid flow rate when roll waves were formed due to the first mechanism. Shallow water wave speed agreed with critical wave speeds at transition and nonlinear wave speeds for fully developed roll waves in certain cases. The increase in interfacial friction due to the presence of large waves was compared with models from the literature.  相似文献   

17.
The effect of a non-uniform parallel high magnetic field on flow control characteristics is investigated experimentally for a magnetic fluid single-phase flow and an air—magnetic fluid two-phase flow in a vertical channel. It is found that as the magnetic field strength is increased, the friction factor of the single-phase flow increases significantly. For the two-phase flow, the friction pressure loss and the head pressure loss, which is smaller than the friction loss, are negligibly small compared with the magnetic pressure loss. In the case where air is injected 27.9d upstream from the maximum magnetic field, the air flow is blocked by the magnetic force in the entrance of the magnetic field, which leads to increases in both local void fraction and pressure drop there. In the case where air is injected 1.43d downstream from the maximum magnetic field, the air flow is accelerated, resulting in a decrease in void fraction and an increase in pressure rise. In the latter case and under the present range of experimental conditions, the magnetic pumping head reaches 0.02 MPa at the highest, and the maximum circulation flow rate reaches twice as high as non-magnetically driven flow rate.  相似文献   

18.
The numerical solution of the flow in a stepped channel constricted to half its width has been obtained for Reynolds numbers up to 2000 using Newton's iteration to solve the ensuing algebraic system. In order to avoid high-frequency errors, a locally fine grid is effected near the corner by transformation of the independent variables. The results predict a downstream recirculation region, observed in experiments but not found in earlier numerical calculations. The inclusion of the Dennis–Hudson upwinding, added for stability in SOR methods, whilst giving the same characteristics of the flow, is less accurate by at least an order of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号