首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Experimental work on two-phase vertical upward flow was carried out using a 19 mm internal diameter, 7 m long pipe and studying the time series of cross-sectional average void fractions and pressure gradient which were obtained simultaneously. With the aid of a bank of published data in which the pipe diameter is the range from 0.5 to 70 mm, the effect of pipe diameter on flow characteristics of two-phase flow is investigated from various aspects. Particularly, the work focuses on the periodic structures of two-phase flow. Average film thicknesses and the gas flow rate where slug/churn and churn/annular flow transitions occur all increase as the diameter of the pipe becomes larger. On the other hand, the pressure gradients, the frequencies of the periodic structures and the velocities of disturbance waves decrease. The velocity of disturbance waves has been used to test the model of Pearce (1979). It is found that the suggested value of Pearce coefficient 0.8 is reasonable for lower liquid flow rates but becomes insufficient for higher liquid flow rates.  相似文献   

2.
An experimental investigation was performed to obtain the flow and heat transfer characteristics of single-phase water flow and two-phase pipe boiling water flow under high gravity (Hi-G) in present work. The experiments were conducted on a rotating platform, and boiling two-phase flow state was obtained by means of electric heating. The data were collected specifically in the test section, which was a lucite pipe with inner diameter of 20 mm and length of 400 mm. By changing the parameters, such as rotation speed, inlet temperature, flow rate, and etc., and analyzing the fluid resistance, effective heat and heat transfer coefficient of the experimental data, the effects of dynamic load on the flow and heat transfer characteristics of single phase water and two-phase boiling water flow were investigated and obtained. The two-phase flow patterns under Hi-G condition were obtained with a video camera. The results show that the dynamic load significantly influences the flow characteristic and boiling heat transfer of the two-phase pipe flow. As the direction of the dynamic load and the flow direction are opposite, the greater the dynamic load, the higher the outlet pressure and the flow resistance, and the lower the flow rate, the void fraction, the wall inner surface temperature and the heat transfer capability. Therefore, the dynamic load will block the fluid flow, enhance heat dissipation toward the ambient environment and reduce the heat transfer to the two-phase boiling flow.  相似文献   

3.
The axial development of the void fraction profile, interfacial area concentration and Sauter mean bubble diameter of adiabatic nitrogen-water bubbly flows in a 9 mm-diameter pipe were measured using stereo image processing under normal and microgravity conditions. The flow measurements were performed at four axial locations (axial distance from the inlet, z normalized by the pipe diameter, D, z/= 5, 20, 40 and 60) and with various flows: superficial gas velocity of 0.00840-0.0298 m/s, and superficial liquid velocity of 0.138-0.914 m/s. The effect of gravity on radial distribution of bubbles and the axial development of two-phase flow parameters is discussed in detail based on the obtained database and visual observation. Following Serizawa-Kataoka’s phase distribution pattern criteria under normal gravity conditions, the phase distribution pattern map was developed. Similar to normal gravity two-phase flows, wall, core and intermediate void peak patterns are observed under microgravity conditions but a transition void distribution pattern is not observed in the current experimental conditions. The data obtained in the current experiment are expected to contribute to the benchmarking of CFD simulation of phase distribution pattern and interfacial area concentration in forced convective pipe flow under microgravity conditions.  相似文献   

4.
An instrumentation system was developed to measure two-phase flow velocity and void fraction. The principle of operation of this system was based on the measurement of the electrical impedance of two-phase mixtures. Two-phase velocity is estimated by time-of-flight analysis of signals from two spatially separated sensors. A technique involving measurement of both the capacitance and the conductance of the mixture was used to determine void fraction and correct for the effect of liquid distribution. The string probe instrumentation proved to be durable in air/water and steam/water flows and demonstrated an ability to measure a wide range of flow velocities (1–17 m/s) and void fractions (0.25?0.99+).  相似文献   

5.
Oil–water two-phase flow experiments were conducted in a 15 m long, 8.28 cm diameter, inclinable steel pipe using mineral oil (density of 830 kg/m3 and viscosity of 7.5 mPa s) and brine (density of 1060 kg/m3 and viscosity of 0.8 mPa s). Steady-state data on flow patterns, two-phase pressure gradient and holdup were obtained over the entire range of flow rates for pipe inclinations of −5°, −2°, −1.5°, 0°, 1°, 2° and 5°. The characterization of flow patterns and identification of their boundaries was achieved via observation of recorded movies and by analysis of the relative deviation from the homogeneous behavior. A stratified wavy flow pattern with no mixing at the interface was identified in downward and upward flow. Two gamma-ray densitometers allowed for accurate measurement of the absolute in situ volumetric fraction (holdup) of each phase for all flow patterns. Extensive results of holdup and two-phase pressure gradient as a function of the superficial velocities, flow pattern and inclinations are reported. The new experimental data are compared with results of a flow pattern dependent prediction model, which uses the area-averaged steady-state two-fluid model for stratified flow and the homogeneous model for dispersed flow. Prediction accuracies for oil/water holdups and pressure gradients are presented as function of pipe inclination for all flow patterns observed. There is scope for improvement for in particular dual-continuous flow patterns.  相似文献   

6.
Two-phase internal flow is present in many piping system components. Although two-phase damping is known to be a significant constituent of the total damping, the energy dissipation mechanisms that govern two-phase damping are not well understood. In this paper, damping of three different clamped–clamped tubes subjected to two-phase air–water internal axial flow is investigated. Experimental data are reported, showing a strong dependence of two-phase damping on void fraction, flow velocity and flow regime. Data-points plotted on two-phase flow pattern maps indicate that damping is greater in a bubbly flow regime. The two-phase damping ratio reaches a maximum value at the highest void fraction before the transition to a churn flow regime. An analytical model that relates the two-phase damping ratio to the interface surface area is proposed. The model is based on rigid spherical bubbles in cubic elementary flow volumes. The analytical results are well correlated with the experiments.  相似文献   

7.
The concurrent upward two-phase flow of air and water in a long vertical large diameter pipe with an inner diameter (D) of 200 mm and a height (z) of 26 m (z/D = 130) was investigated experimentally at low superficial liquid velocities from 0.05009 to 0.3121 m/s and the superficial gas velocities from 0.01779 to 0.5069 m/s. The resultant void fractions range from 0.03579 to 0.4059. According to the observations using a high speed video camera, the flow regimes of bubbly, developing cap bubbly and fully-developed cap bubbly flows prevailed in the flows. The developing cap bubbly flow appeared as a flow regime transition from bubbly to fully-developed cap bubble flow in the vertical large diameter pipe. The developing cap bubbly flow changes gradually and lasts for a long time period and a wide axial region in the flow direction, in contrast to a sudden transition from bubbly to slug flows in a small diameter pipe. The analysis in this study showed that the flow regime transition depends not only on the void fraction but also on the axial distance in the flow and the pipe diameter. The axial flow development brings about the transition to happen in a lower void fraction flow and the increase of pipe diameter causes the transition to happen in a higher void fraction flow. The measured void fraction showed an N-shaped axial changing manner that the void fraction increases monotonously with axial position in the bubbly flow, decreases non-monotonously with axial position in the developing cap bubbly flow, and increases monotonously again with axial position in the fully-developed cap bubbly flow. The temporary void fraction decrease phenomenon in the transition region from bubbly to cap bubbly flow can be attributed to the formation of medium to large cap bubbles and their gradual growth into the maximum size of cap bubble and/or cluster of large cap bubbles in the developing cap bubbly flow. In order to predict the N-shaped axial void fraction changing behaviors in the flow regime transition from bubbly to cap bubbly flow, the existing 12 drift flux correlation sets for large diameter pipes are reviewed and their predictabilities are studied against the present experimental data. Although some drift flux correlation sets, such as those of Clark and Flemmer (1986) and Hibiki and Ishii (2003), can predict the present experimental data with reasonable average relative deviations, no drift flux correlation set for distribution parameter and drift velocity can give a reliable prediction for the observed N-shaped axial void fraction changing behaviors in the region from bubbly to cap bubbly flow in a vertical large diameter pipe.  相似文献   

8.
A state of the art review of two-phase void fraction models in smooth horizontal tubes is provided and a probabilistic two-phase flow regime map void fraction model is developed for refrigerants under condensation, adiabatic, and evaporation conditions in smooth, horizontal tubes. Time fraction information from a generalized probabilistic two-phase flow map is used to provide a physically based weighting of void fraction models for different flow regimes. The present model and void fraction models in the literature are compared to data from multiple sources including R11, R12, R134a, R22, R410A refrigerants, 4.26–9.58 mm diameter tubes, mass fluxes from 70 to 900 kg/m2 s, and a full quality range. The present model has a mean absolute deviation of 3.5% when compared to the collected database.  相似文献   

9.
Despite the importance of air–oil slug flows to many industrial applications, their available data reported in the literature are limited compared to air–water slug flows. The main objective of the present study is to explain how air–oil slug flow parameters can be experimentally investigated using hot-film anemometry, capacitance sensors and image processing. Experiments were performed using air–oil slug flow through a horizontal pipe for air superficial velocities ranged from 0.01 m/s to 0.65 m/s and oil superficial velocities ranged from 0.03 m/s to 2.3 m/s. The signal obtained from the hot-film anemometer was used to determine the time-averaged local void fraction and liquid velocity and turbulence intensity for air–oil slug flow. The capacitance signals along with the data obtained by image processing of the flow were used to determine the elongated bubble length and velocity. The measurements techniques used found to describe in detail the internal structure of the slug flow. Finally, the experimental results were compared to existing models and correlations.  相似文献   

10.
The two-phase pressure drop in vertical industrial pipes is mainly determined by gravitation and acceleration of the fluid, which means that the void fraction is key an important parameter in any model to predict pressure drops. Typically, these models are applied in industry to size pumps and, e.g., emergency relief systems. There is a shortage of void fraction data in the literature for liquids with a dynamic viscosity above 1000 mPa s. Adiabatic experiments have been performed of mixtures of nitrogen and solutions of polyvinylpyrrolidone (Luviskol®) in water with dynamic viscosities in the range 900–7000 mPa s. Inner tube diameter was 54.5 mm. Mass flux and quality were varied in a wide range: 8–3500 kg/m2/s and 0–82%, respectively. The corresponding superficial velocities were 0.005–3.4 m/s for the liquid and 0–30 m/s for the nitrogen. For comparison, reference measurements were taken of mixtures of nitrogen with water (1 mPa s). Care has been taken to measure only well-developed flows.  相似文献   

11.
Multiphase flows are very common in industry, oftentimes involving very harsh environments and fluids. Accordingly, there is a need to determine the dispersed phase holdup using noninvasive fast responding techniques; besides, knowledge of the flow structure is essential for the assessment of the transport processes involved. The ultrasonic technique fulfills these requirements and could have the capability to provide the information required. In this paper, the potential of the ultrasonic technique for application to two-phase flows was investigated by checking acoustic attenuation data against experimental data on the void fraction and flow topology of vertical, upward, air–water bubbly flows in the zero to 15% void fraction range. The ultrasonic apparatus consisted of one emitter/receiver transducer and three other receivers at different positions along the pipe circumference; simultaneous high-speed motion pictures of the flow patterns were made at 250 and 1000 fps. The attenuation data for all sensors exhibited a systematic interrelated behavior with void fraction, thereby testifying to the capability of the ultrasonic technique to measure the dispersed phase holdup. From the motion pictures, basic gas phase structures and different flows patterns were identified that corroborated several features of the acoustic attenuation data. Finally, the acoustic wave transit time was also investigated as a function of void fraction.  相似文献   

12.
This work aims to develop and validate a numerical model to simulate the flow-structure interaction in tube bundles subjected to two-phase flow. The model utilizes a mixture multiphase module in which a drift flux formulation is used to account for the slip between the phases. Two methods of numerical flow-structure interaction are used to predict the onset of fluidelastic instability (FEI) in the streamwise direction for a two-phase air–water flow mixture in parallel triangular tube bundles. These models are the hybrid analytical-flow field model and the direct numerical flow/structure coupling model. This work investigates the effects of void fractions in the range of 20% to 80% and several pitch-to-diameter ratios (P/D) in the range of 1.3 to 1.7. The results of the fluidelastic forces and the stability threshold are validated against the experimental data available in the literature and show an excellent agreement. The streamwise FEI threshold shows a significant dependency on the pitch-to-diameter ratio while the void fraction exhibits a lesser effect. Generally, the stability threshold increases as the pitch-to-diameter ratio increases. The model that was developed paves the way for devising of more reliable prediction tools for FEI in steam generators.  相似文献   

13.
The flow boiling patterns of liquid nitrogen in a vertical mini-tube with an inner diameter of 1.931 mm are visualized with a high-speed digital camera. The superficial gas and liquid velocities are in the ranges of 0.01–26.5 m/s and 0.01–1.2 m/s, respectively. Four typical flow patterns, namely, bubbly, slug, churn and annular flow are observed. Some interesting scenes about the entrainment and liquid droplet deposition in the churn and annular flow, and the flow reversal with the indication of negative pressure drop, are also presented. Based on the visualization, the two-phase flow regime maps are obtained. Compared with the flow regime maps for gas–water flow in tubes with similar hydraulic diameters, the region of slug flow in the present study reduces significantly. Correspondingly, the transition boundary from the bubbly flow to slug flow shifts to higher superficial gas velocity, and that of churn to annular flow moves to lower superficial gas velocity. Moreover, time-averaged void fraction is calculated by quantitative image-digitizing technique and compared with various prediction models. Finally, three kinds of oscillations with long-period and large-amplitude are found, possible explanation for the oscillations is given by comparing the instantaneous flow images with the data of pressure, mass flux and temperature recorded synchronously.  相似文献   

14.
This paper presents an application of the wavelet analysis technique for two-phase flow pattern identification by using the void fraction signals obtained from a multi-channel Impedance Void Meter (IVM) in a vertical-upward air–water flow. A new method for the objective discrimination of the two-phase flow pattern has been developed to provide information regarding the local energy of void fraction signals at a given scale on the joint time–frequency diagram. The void signals are processed with Continuous Wavelet Transform (CWT) to get the local wavelet energy coefficients map on the time–frequency diagram. The effective local wavelet energy and the effective scale are then calculated. Then the criteria for flow pattern identification are, finally, obtained. A series of void fraction measurements were conducted over a wide range of air–water vertical-upward flow condition to provide an extensive database to cover several types of flow patterns. The results show that the proposed method has a high precision for characterizing different flow regimes in two-phase flow, and is considerably more promising for the online recognition of two-phase flow patterns due to the short time of data processing.  相似文献   

15.
The bubble and liquid turbulence characteristics of air–water bubbly flow in a 200 mm diameter vertical pipe was experimentally investigated. The bubble characteristics were measured using a dual optical probe, while the liquid-phase turbulence was measured using hot-film anemometry. Measurements were performed at six liquid superficial velocities in the range of 0.2–0.68 m/s and gas superficial velocity from 0.005 to 0.18 m/s, corresponding to an area average void fraction from 1.2% to 15.4%. At low void fraction flow, the radial void fraction distribution showed a wall peak which changed to a core peak profile as the void fraction was increased. The liquid average velocity and the turbulence intensities were less uniform in the core region of the pipe as the void fraction profile changed from a wall to a core peak. In general, there is an increase in the turbulence intensities when the bubbles are introduced into the flow. However, a turbulence suppression was observed close to the wall at high liquid superficial velocities for low void fractions up to about 1.6%. The net radial interfacial force on the bubbles was estimated from the momentum equations using the measured profiles. The radial migration of the bubbles in the core region of the pipe, which determines the shape of the void profile, was related to the balance between the turbulent dispersion and the lift forces. The ratio between these forces was characterized by a dimensionless group that includes the area averaged Eötvös number, slip ratio, and the ratio between the apparent added kinetic energy to the actual kinetic energy of the liquid. A non-dimensional map based on this dimensionless group and the force ratio is proposed to distinguish the conditions under which a wall or core peak void profile occurs in bubbly flows.  相似文献   

16.
A two-phase flow around a body has scarcely been studied until now, though the flow is used in many industrial components. The cross flows around a spacer in a fuel assembly of light water reactors (LWR) and tube supports in a steam generator are closely related to the long-term reliability and the safety. The present study has been planned to clarify the two-phase flow and heat transfer characteristics around a body including the unknown complicated flow behavior. In the first report, the flow characteristics near and behind a cylinder which was located in a vertical upward air-water bubbly flow were investigated. From the observation of the flow patterns and the measurements of the distributions of void fraction, liquid velocity and static pressure, it is revealed that the vortex flow and the change of the static pressure and liquid velocity distribution around the cylinder resulted in the large distortion of the void fraction distribution around the cylinder. The most noticeable phenomena in the wake were that the peaks of the local void fraction appeared in the vicinity of the cylinder surface near the separation point and in the wake behind the cylinder.  相似文献   

17.
垂直向上气液两相流中两相斯托拉赫数的研究   总被引:4,自引:0,他引:4  
试验研究了三角形、T形两种形状4种规格的物体,在垂直上升气液两相流中,发生气液两相涡街时,气液两相斯托拉赫数的变化规律,在测得大量数据的基础上,得出了发生气液两相涡街时,气液两相斯托拉赫数的通用关系式,研究表明,气液两相斯托拉赫数在两相工况下为一变数,其值与来流截面含气率、涡街发生体形状和特征尺寸、来流方向等因素有关,应用此关系式,根据测得的两相涡街频率可将涡街发生体作为测量两相流流量与组分的测量元件。  相似文献   

18.
19.
水平管气液两相间歇流含气率研究   总被引:2,自引:0,他引:2  
对大直径水平管内气液二相流动进行了实验,实验结果表明大直径水平管与小直径水平管具有不同的气液二相流动特征。分析和提出了适用于大直径水平管内间歇流液弹含气率模型,其计算值与实验值非常接近。  相似文献   

20.
To utilize the advantageous properties of two-phase flow in microgravity applications, the knowledge base of two-phase flow phenomena must be extended to include the effects of gravity. In the experiment described, data regarding the behavior of two-phase flow in a conduit under microgravity conditions (essentially zero gravity) are explored. Of particular interest, knowledge of the void fraction of the gas and liquid in a conduit is necessary to develop models for heat and mass transfer, pressure drop, and wall shear. An experiment was conducted under reduced gravity conditions to collect data by means of a capacitance void fraction sensor and high speed visual imagery. Independent parameters were varied to map the flow regime regions. These independent parameters include gas and liquid volumetric flow rates and saturation pressures. Void fraction measurements were taken at a rate of 100 Hz with six sensors at two locations along the conduit. Further, statistical parameters were developed from the void fraction measurements. Statistical parameters such as variance, signal-to-noise ratio, half height value, and linear area difference were calculated and found to have characteristics allowing flow regime identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号