首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In (100)p-Si radiation damage was produced by implanting B+ ions with an energy of 80keV, 90keV and 1.6MeV. The specimens were annealed by scanned electronbeam irradiation (20keV, 1–2mAcm–2). The formation, evolution and annihilation of defects during the irradiation process were investigated by employing DLTS and RBS measuring techniques. The results show a minimum of defect concentration and an efficiency of the electrical activation of B higher than 80% at an annealing time of 4.5 s. For irradiation times longer than 5 s it becomes evident, that the crystal surface acts as source of defects and contributes to an increase in defect concentration.  相似文献   

2.
The influence of irradiation of silicon p+-n diodes by 15 to 30 keV electrons on the deep level transient spectroscopy (DLTS) spectra of the diodes was studied. It was discovered that irradiation leads to the transformation of the DLTS spectra in crystals containing defect clusters. A comparison of the depth of the p-n junction in the crystal with the penetration depth of the electrons indicates that the detected rearrangement of defects is due to secondary electrons diffusing into the p-n junction. A recombination-stimulated mechanism of defect rearrangement is proposed. In crystals containing only point defects, transformation of the DLTS spectra is not observed.Deceased.Translated from Izvestia Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 32–37, June, 1990.  相似文献   

3.
Time-resolved photoconductivity measurements have been used to characterize electron traps in wide-gap n-HgO0.3Cd0.7Te for the first time. The characterization was made possible by combining the time-resolved photoconductive data with the analytical method conventionally used in DLTS spectroscopy. Two electron traps were found in the band gap with 61 meV and 79 meV below the conduction band edge, their concentrations are 1.1×1013 cm–3 and 5.8×1011 cm–3, respectively. Compared with DLTS spectroscopy, this characterization method markedly simplifies sample preparation and experimental procedure.  相似文献   

4.
Semiconductor nanoparticle and conducting polymer composite is an interesting class of materials for optoelectronic and photovoltaic device application. We have synthesized a composite of nanocrystalline PbS and conducting polymer MEH-PPV by chemical synthesis and studied the effect of swift heavy ion (SHI) irradiation on the composite material. The irradiation of the composite materials in thin film form is carried out with 120 MeV Si+9 ion beam at fluences from 5×1010 to 1013 ions/cm2. Fluence dependent optical and structural properties have been observed in optical absorption, PL and TEM studies. Reduction of nanoparticle size has been observed after irradiation.  相似文献   

5.
Deep level transient spectroscopy (DLTS) and high-frequency capacitance-voltage (HF-CV) measurement are used for the investigation of HfAlO/p-Si interface. The so-called “slow” interface states detected by HF-CV are obtained to be 2.68 × 1011 cm−2. Combined conventional DLTS with insufficient-filling DLTS (IF-DLTS), the true energy level position of interfacial traps is found to be 0.33 eV above the valance band maximum of silicon, and the density of such “fast” interfacial traps is 1.91 × 1012 cm−2 eV−1. The variation of energy level position of such traps with different annealing temperatures indicates the origin of these traps may be the oxide-related traps very close to the HfAlO/Si interface. The interfacial traps’ passivation and depassivation effect of postannealing in forming gas are shown by comparing samples annealed at different temperatures.  相似文献   

6.
In the equilibrium immiscible Ag–Co system characterized by a large positive heat of formation (28 kJ/mol), interesting structural phase transitions were observed in Ag–Co multilayered films upon 200-keV xenon-ion irradiation at 300 K within a dose range of 5×1014 to 9×1015 Xe+/cm2. The formation of a new metastable HCP phase and observation of other structural phase transitions upon ion irradiation were quite in accordance with first principles and thermodynamic calculations. It was observed that in the as-deposited Ag–Co multilayered films, the stress from the Co layers resulted in a condensation effect on the Ag lattice, and that after irradiation to a dose of 5×1014 Xe+/cm2, the Ag lattice recovered to its original size along with the hcp Co transforming into its high-temperature-stabilized fcc structure. Besides, the mechanism of the metastable phase formation as well as the observed structural phase transitions induced by ion irradiation is discussed in terms of thermodynamics and growth kinetics. PACS 61.82.Bg; 64.60.My; 64.70.Kb  相似文献   

7.
8.
The hydrogen-enhanced recrystallization during thermal annealing in N+-implanted GaAs has been studied by combinatorial implantation process. Raman spectroscopy was used to study the crystallization properties of a set of hydrogenated cells on the N+-implanted GaAs wafer. A whole competitive process between H+ implantation-induced damage and recovery in the regrowth process of amorphous GaAs was observed within the proton dose region of 1.6×1015 to 1.1×1017 cm-2. In H+ dose region of 2.1×1016 to 5.4×1016 cm-2, H-enhanced recovery of crystal dominates the regrowth process. The crystal quality is better than that of unhydrogenated cell of N+-implanted GaAs in the H+ dose range from 4.7×1016 to 8.1×1016 cm-2. It is suggested that the vacancy supersaturation produced during hydrogen irradiation is dominantly responsible for the enhancement of thermal regrowth in the N+-implanted GaAs. Both the crystallization and amorphization process are clearly observed in different proton implantation dose regions. PACS 61.72.Vv; 63.20.Dj; 81.05.Ea  相似文献   

9.
Low energy (±80 eV) Ar plasma etching has been successfully used to etch several semiconductors, including GaAs, GaP, and InP. We have studied the only prominent defect, E0.31, introduced in n-type Sb-doped Ge during this process by deep level transient spectroscopy (DLTS). The E0.31 defect has an energy level at 0.31 eV below the conduction band and an apparent capture cross-section of 1.4×10−14 cm2. The fact that no V-Sb defects and no interstitial-related defects were observed implies that the etch process did not introduce single vacancies or single interstitials. Instead it appears that higher order vacancy or interstitial clusters are introduced due to the large amount of energy deposited per unit length along the path of the Ar ions in the Ge. The E0.31 defect may therefore be related to one of these defects. DLTS depth profiling revealed the E0.31 concentration had a maximum (6×1013 cm−3) close to the Ge surface and then it decreased more or less exponentially into the Ge. Finally, annealing at 250 °C reduced the E0.31 concentration to below the DLTS detection limit.  相似文献   

10.
In this paper, the effect of neutron irradiation on sapphire single crystal with fast neutron of 1.0×1018 and 1.0×1019 neutrons/cm2 has been investigated along with the effect of annealing temperature. It is found that the colorless transparent sapphire single crystals were turned yellow after 10 MeV fast neutron irradiation at room temperature. There are peaks at 206, 230, 258, 305, 358 and 452 nm after neutron irradiation. And the intensity of optical absorption bands decrease with wavelength and annealing temperature. A new absorption peak at 452 nm was found after isothermal annealing at 400 °C for 10 min, which was ascribed to F2+ color center. Because of the recombination of interstitial ions and vacancies, color centers were almost removed after annealing at 1000 °C. The TL peaks were found to shift to higher temperature after neutron irradiation. And a higher fluence of the neutron irradiation would result in deep traps revealed as the new TL peaks at 176 and 227 °C.  相似文献   

11.
Deep level transient spectroscopy (DLTS) is employed to study deep level defects in n-6H-SiC (silicon carbide) epilayers grown by the sublimation method. To study the deep level defects in n-6H-SiC, we used as-grown, nitrogen doped and nitrogen-boron co-doped samples represented as ELS-1, ELS-11 and ELS-131 having net (NDNA) ∼2.0×1012 cm−3, 2×1016 cm−3 and 9×1015 cm3, respectively. The DLTS measurements performed on ELS-1 and ELS-11 samples revealed three electron trap defects (A, B and C) having activation energies Ec – 0.39 eV, Ec – 0.67 eV and Ec – 0.91 eV, respectively. While DLTS spectra due to sample ELS-131 displayed only A level. This observation indicates that levels B and C in ELS-131 are compensated by boron and/or nitrogen–boron complex. A comparison with the published data revealed A, B and C to be E1/E2, Z1/Z2 and R levels, respectively.  相似文献   

12.
The electrical properties of the SiO2/n-type Si(100) interface, where the silicon-oxide layer was grown by an electrodeless rf oxygen-plasma-cathodization technique, were investigated usingC-V and DLTS methods. Interface traps with high density in the range of 1012 eV–1 cm–2 and a capture cross section as large as 10–18 cm2 were found in the upper region of the silicon forbidden gap. After a post-annealing process, typically at 400°C for 30 min in dry N2 atmosphere, their densities and capture cross sections were reduced to the range of 1–2 × 1011 eV–1 cm–2 and 10–19 cm–2, respectively. Apparant differences in DLTS curves before and after thermal annealing were also observed. Results are qualitatively explained by considering the specific oxidation and annealing mechanism of this low-temperature silicon-oxidation technique.  相似文献   

13.
Deep levels introduced by low‐energy (200 keV) electron irradiation in n‐type 4H‐SiC epitaxial layers grown by chemical vapour deposition were studied by deep level transient spectroscopy (DLTS) and photoexcitation electron paramagnetic resonance (photo‐EPR). After irradiation, several DLTS levels, EH1, EH3, Z1/2, EH5 and EH6/7, often reported in irradiated 4H‐SiC, were observed. In irradiated freestanding films from the same wafer, the EPR signals of the carbon vacancy in the positive and negative charge states, VC+ and VC, respectively, can be observed simultaneously under illumination with light of certain photon energies. Comparing the ionization energies obtained from DLTS and photo‐EPR, we suggest that the EH6/7 (at ~EC – 1.6 eV) and EH5 (at ~EC – 1.0 eV) electron traps may be related to the single donor (+ | 0) and the double acceptor (1– | 2–) level of VC, respectively. Judging from the relative intensity of the DLTS signals, the EH6/7 level may also be contributed to by other unidentified defects. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Ion irradiation effects on emission bands related to self-trapped defects in Czochralski-grown Lu2SiO5 (LSO) crystals has been investigated. Irradiation was carried out using 53 keV He+ and 40 keV H+ beams with doses of 1 and 2×1016 atoms/cm2, respectively, at room temperature. Post-irradiation radioluminescence measurements were carried out in the 5-300 K temperature range using Mo-target X-ray excitation. Two emission bands were observed at 256 and 315 nm and assigned to self-trapped excitons (STE) and self-trapped holes (STH), respectively. The intensity of the bands was determined by the ballistic damage induced by irradiation, and no effects due to the chemical nature of implanted species were observed. Thermal-quenching activation energies of these defects as a function of irradiation conditions were extracted by applying the Mott-Seitz two-level model. Each band presents strikingly different behavior following irradiation; activation energy of the STH increases two-fold whereas the STE decreases three-fold. The results indicate a major role of surface effects on the radioluminescence of LSO. For comparative purposes, irradiated Lu2O3 was also investigated.  相似文献   

15.
Ion-beam induced atomic mixing of Cu/Au bilayer thin film is studied using combined electrical resistivity measurements and Rutherford Backscattering Spectrometry (RBS). 400 keV Kr+ ion irradiation with fluences ranging from 3.3×1015 to 7.6×1016 ions/cm2 at room temperature have been used. Ion beam mixing lead to a uniformly mixed metal alloy. The formation of Cu/Au solid solutions depends on the initial composition and on the fluence of irradiating ions. For an initial composition of Cu42Au58, a Cu-rich solid solution of composition Cu72Au28 is formed after irradiation with 7.6×1016 ions/cm2. The kinematics of the intermixing process is also studied by in situ electrical resistivity measurements which confirmed the formation of the Cu/Au solid solutions.  相似文献   

16.
The irradiation effect of 350 MeV Au+ ions on Ti/Si multilayers has been studied using Rutherford backscattering spectroscopy, X-ray reflectivity (XRR) and grazing incidence X-ray diffraction (GIXRD). Intermixing effects have been studied as a function of fluences of 0.46 × 1014, 1.82 × 1014 and 4.62 × 1014 cm−2. Rutherford backscattering spectra (RBS) confirm mixing at the interface. X-ray reflectivity patterns show damage at the interfaces with the absence of a continuous fringe pattern at high fluence doses in comparison to the pristine interface. Mixing leads to titanium di-silicide (TiSi2) phase formation as a shown by grazing incidence X-ray diffraction patterns. The observed intermixing is attributed to energy deposited by the incident ions in the electronic system of the target. Swift heavy ion irradiation induced intermixing increases with fluence.  相似文献   

17.
The results of studying the redistribution of Be, Al, Ti, Fe, Cu, Zr, Mo, and W atoms incorporated in polycrystalline metal samples under irradiation with He+, (He+ + Ar+), and Ar+ ion beams with a broad energy spectrum and an average energy of 10 keV at irradiation doses of 1 × 1021 ion/cm2 are studied. It is discovered that irradiation at doses exceeding 1 × 1019 ion/cm2 results in local small-crystal formations being produced in a near-surface substrate layer. Their typical dimensions are less than 1–5 μm, and their the density is up to 1–100. They contain incorporated atoms and impurity atoms with a concentration of 0.1–10 at %. Subsequent irradiation at a dose of 1 × 1020 ions/cm2 or more leads to disappearance of these formations, mainly because of sputtering processes.  相似文献   

18.
Super-hydrophobic PTFE surfaces were obtained by irradiation of 200 keV Xe+ ion with the fluence of 6.2×1013 ions/cm2. The contact angle of water on such surface is as large as 161±3°. SEM and XPS were used to investigate how the topological and chemical changes affect the wettability of the irradiated surface. Needle like structures at nanometer scale caused by irradiation are considered to be the reason of the super-hydrophobicity. The formation of oxygen containing group and defluorination effect on the treated surface are inferred to have negative contribution to the hydrophobic optimization of PTFE surface.  相似文献   

19.
For direct writing of electrically conducting connections and areas into insulating gold oxide thin films a scanning Ar+ laser beam and a 30 keV Ga+ focused ion beam (FIB) have been used. The gold oxide films are prepared by magnetron sputtering under argon/oxygen plasma. The patterning of larger areas (dimension 10–100 μm) has been carried out with the laser beam by local heating of the selected area above the decomposition temperature of AuOx (130–150 °C). For smaller dimensions (100 nm to 10 μm) the FIB irradiation could be used. With both complementary methods a reduction of the sheet resistance by 6–7 orders of magnitude has been achieved in the irradiated regions (e.g. with FIB irradiation from 1.5×107 Ω/□ to approximately 6 Ω/□). The energy-dispersive X-ray analysis (EDX) show a considerably reduced oxygen content in the irradiated areas, and scanning electron microscopy (SEM), as well as atomic force microscopy (AFM) investigations, indicate that the FIB patterning in the low-dose region (1014 Ga+/cm2) is combined with a volume reduction, which is caused by oxygen escape rather than by sputtering. Received: 30 May 2000 / Accepted: 31 May 2000 / Published online: 13 July 2000  相似文献   

20.
This paper describes the effect of 24 MeV proton irradiation on the electrical characteristics of a pnp bipolar junction transistor 2N 2905A. I-V, C-V and DLTS measurements are carried out to characterize the transistor before and after irradiation. The properties of deep level defects observed in the bulk of the transistor are investigated by analysing the DLTS data. Two minority carrier levels, E C − 0.27 eV and E C − 0.58 eV and one majority carrier level, E V +0.18 eV are observed in the base collector junction of the transistor. The irradiated transistor is subjected to isochronal annealing. The influence of isochronal annealing on I-V, C-V and DLTS characteristics are monitored. Most of the deep level defects seem to anneal out above 400°C. It appears that the deep level defects generated in the bulk of the transistor lead to transistor gain degradation. A comparison of proton- and electron-induced gain degradation is made to assess the vulnerability of pnp transistor as against npn transistors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号