首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let α ? 0 and let D(α) = {f(z) = ∑0αnzn ¦ ∑0 (n + 1)α¦ an ¦ < ∞}. Then D(α) is a subalgebra of l1. We discuss the weak-1 generators of D(α). We use some of our techniques to prove that if ? is a weak-1 generator of H and ∥ ? ∥ ? 1, then the composition operator C? on the Dirichlet space has dense range.  相似文献   

2.
In this paper the integrals fmv(τ) = ∝0exp[?(t + τ)]tv(ln t)m(t + τ)?1 dt andgmv(τ) = ∝0exp[? ¦ ? τ ¦]tv(ln t)m(t ? τ)?1 dt are investigated for positive real values of the variable τ. Here, m is a nonnegative integer, v is a complex variable with Re(v) > ?1. Both integrals are related to the complex integral Φ(z) = ∝0exp[?(t ? z)]t?γ(ln t)m(t ? z)?1dt with 0 ? Re(γ) < 1, the behavior of which is analyzed in detail. The results are applied to obtain asymptotic representations for fmn(τ) and gmn(τ), m and n both nonnegative integers, near τ = 0. The latter integrals play a role in the study of the equations of neutron transport and radiative transfer.  相似文献   

3.
Let u(x, t) be the solution of utt ? Δxu = 0 with initial conditions u(x, 0) = g(x) and ut(x, 0) = ?;(x). Consider the linear operator T: ?; → u(x, t). (Here g = 0.) We prove for t fixed the following result. Theorem 1: T is bounded in Lp if and only if ¦ p?1 ? 2?1 ¦ = (n ? 1)?1and ∥ T?; ∥LαP = ∥?;∥LPwith α = 1 ?(n ? 1) ¦ p?1 ? 2?1 ¦. Theorem 2: If the coefficients are variables in C and constant outside of some compact set we get: (a) If n = 2k the result holds for ¦ p?1 ? 2?1 ¦ < (n ? 1)?1. (b) If n = 2k ? 1, the result is valid for ¦ p?1 ? 2?1 ¦ ? (n ? 1). This result are sharp in the sense that for p such that ¦ p?1 ? 2?1 ¦ > (n ? 1)?1 we prove the existence of ?; ? LP in such a way that T?; ? LP. Several applications are given, one of them is to the study of the Klein-Gordon equation, the other to the completion of the study of the family of multipliers m(ξ) = ψ(ξ) ei¦ξ¦ ¦ ξ ¦ ?b and finally we get that the convolution against the kernel K(x) = ?(x)(1 ? ¦ x ¦)?1 is bounded in H1.  相似文献   

4.
Let m and vt, 0 ? t ? 2π be measures on T = [0, 2π] with m smooth. Consider the direct integral H = ⊕L2(vt) dm(t) and the operator (L?)(t, λ) = e?iλ?(t, λ) ? 2e?iλtT ?(s, x) e(s, t) dvs(x) dm(s) on H, where e(s, t) = exp ∫stTdvλ(θ) dm(λ). Let μt be the measure defined by T?(x) dμt(x) = ∫0tT ?(x) dvs dm(s) for all continuous ?, and let ?t(z) = exp[?∫ (e + z)(e ? z)?1t(gq)]. Call {vt} regular iff for all t, ¦?t(e)¦ = ¦?(e for 1 a.e.  相似文献   

5.
For elliptic operators A = ∑¦α¦ ? m aα(x) Dα on Rn and certain of their singular perturbations B = ∑¦α¦ ? m bα(x)Dα relative compactness of B with respect to A is established. This result applies to the study of Lp-spectra of elliptic operators for different p.  相似文献   

6.
Wr,p(R)-splines     
In [3] Golomb describes, for 1 < p < ∞, the Hr,p(R)-extremal extension F1 of a function ?:E → R (i.e., the Hr,p-spline with knots in E) and studies the cone H1Er,p of all such splines. We study the problem of determining when F1 is in Wr,pHr,pLp. If F1 ? Wr,p, then F1 is called a Wr,p-spline, and we denote by W1Er,p the cone of all such splines. If E is quasiuniform, then F1 ? Wr,p if and only if {?(ti)}ti?E ? lp. The cone W1Er,p with E quasiuniform is shown to be homeomorphic to lp. Similarly, H1Er,p is homeomorphic to hr,p. Approximation properties of the Wr,p-splines are studied and error bounds in terms of the mesh size ¦ E ¦ are calculated. Restricting ourselves to the case p = 2 and to quasiuniform partitions E, the second integral relation is proved and better error bounds in terms of ¦ E ¦ are derived.  相似文献   

7.
Let H1 = ?∑i = 1Ni + V(xi)) + ∑1 ? i <j ? N¦xi ? xj¦?1, V(xi) = N ∝ ¦x ? y¦?1 ?(y)dy, with ? a normalized Gaussian. Suppose E ≠ 0 and that H = H1 + E · (∑i = 1Nxi) has no eigenfunctions in L2(R3N. If H1ψ = μψ with μ < infσess(H1), then (ψ, e?itHψ) decays exponentially at a rate governed by the positions of the resonances of H.  相似文献   

8.
Using results from the theory of B-splines, various inequalities involving the nth order divided differences of a function f with convex nth derivative are proved; notably, f(n)(z)n! ? [x0,…, xn]f ? i = 0n(f(n)(xi)(n + 1)!), where z is the center of mass (1(n + 1))i = 0nxi.  相似文献   

9.
New and more elementary proofs are given of two results due to W. Littman: (1) Let n ? 2, p ? 2n(n ? 1). The estimate ∫∫ (¦▽u¦p + ¦ut¦p) dx dt ? C ∫∫ ¦□u¦p dx dt cannot hold for all u?C0(Q), Q a cube in Rn × R, some constant C. (2) Let n ? 2, p ≠ 2. The estimate ∫ (¦▽(t)¦p + ¦ut(t)¦p) dx ? C(t) ∫ (¦▽u(0)¦p + ¦ut(0)¦p) dx cannot hold for all C solutions of the wave equation □u = 0 in Rn x R; all t ?R; some function C: RR.  相似文献   

10.
Let D(?) be the Doob's class containing all functions f(z) analytic in the unit disk Δ such that f(0) = 0 and lim inf¦f(z) ¦ ? 1 on an arc A of ?Δ with length ¦A ¦? ?. It is first proved that if f?D(?) then the spherical norm ∥ f ∥ = supz?Δ(1 ? ¦z¦2)¦f′(z)¦(1 + ¦f(z)¦2) ? C1sin(π ? (?2))/ (π ? (g92)), where C1 = limn→∞∥ znand12 < C1 < 2e. Next, U represents the Seidel's class containing all non-constant functions f(z) bounded analytic in Δ such that ¦tf(ei0)¦ = 1 almost everywhere. It is proved that inff?Uf∥ = 0, and if f has either no singularities or only isolated singularities on ?Δ, then ∥f∥ ? C1. Finally, it is proved that if f is a function normal in Δ, namely, the norm ∥f∥< ∞, then we have the sharp estimate ∥fp∥ ? pf∥, for any positive integer p.  相似文献   

11.
Let Xi be iidrv's and Sn=X1+X2+…+Xn. When EX21<+∞, by the law of the iterated logarithm (Snn)(n log n)12→0 a.s. for some constants αn. Thus the r.v. Y=supn?1[|Snn|?(δn log n)12]+ is a.s.finite when δ>0. We prove a rate of convergence theorem related to the classical results of Baum and Katz, and apply it to show, without the prior assumption EX21<+∞ that EYh<+∞ if and only if E|X1|2+h[log|X1|]-1<+∞ for 0<h<1 and δ> hE(X1?EX1)2, whereas EYh=+∞ whenever h>0 and 0<δ<hE(X1?EX1)2.  相似文献   

12.
Let (Vn, g) be a C compact Riemannian manifold without boundary. Given the following changes of metric: g′?± = g + Hess ? ± lα2(▽ ? ? ▽?), g?± = ±?g + α2Hess ?, where a is a fixed constant, we study the corresponding Monge-Ampère equations (1)±Log(¦g′?±¦ ¦g¦?1) = F(P,▽?;?), (2)±Logg??±¦ ¦g¦?1) = F(P, ▽?; ?). We first solve Eq. (2)?, under some simple assumptions on F?C. Then, using an appropriate change of functions that enables us to take advantage of the estimates just carried out for Eq. (2)?, we extend to Eq.(1)? all the results proved in our previous articles [5, 6] for the usual Monge-Ampère equation. Although equation (2)+ is not locally invertible, and does not even admit a solution for all F = λ? + ?, λ > 0, f ? C(Vn), a similar change of functions leads to partial results about Eq. (1)+, via C2 and C3 estimates for Eq. (2)+. Eventually we give some comments and errata of our previous article (P. Delanoë, J. Funct. Anal.41 (1981), 341–353).  相似文献   

13.
Let f(z), an analytic function with radius of convergence R (0 < R < ∞) be represented by the gap series ∑k = 0ckzλk. Set M(r) = max¦z¦ = r ¦f(z)¦, m(r) = maxk ? 0{¦ ck ¦ rλk}, v(r) = maxk ¦ ¦ ck ¦ rλk = m(r)} and define the growth constants ?, λ, T, t by
?λ=lim supr→R inf{log[Rr /(R?r)]?1log+log+M(r)}
, and if 0 < ? < ∞,
Tt=lim supr→R inf{[Rr /(R?r)]??log+M(r)}
. Then, assuming 0 < t < T < ∞, we obtain a decomposition theorem for f(z).  相似文献   

14.
We suppose that K is a countable index set and that Λ = {λk¦ k ? K} is a sequence of distinct complex numbers such that E(Λ) = {eλkt¦ λk ? Λ} forms a Riesz (strong) basis for L2[a, b], a < b. Let Σ = {σ1, σ2,…, σm} consist of m complex numbers not in Λ. Then, with p(λ) = Πk = 1m (λ ? σk), E(Σ ∪ Λ) = {eσ1t…, eσmt} ∪ {eλktp(λk)¦ k ? K} forms a Riesz (strong) bas Sobolev space Hm[a, b]. If we take σ1, σ2,…, σm to be complex numbers already in Λ, then, defining p(λ) as before, E(Λ ? Σ) = {p(λk) eλkt¦ k ? K, λk ≠ σj = 1,…, m} forms a Riesz (strong) basis for the space H?m[a, b]. We also discuss the extension of these results to “generalized exponentials” tneλkt.  相似文献   

15.
Let PT denote the orthogonal projection of L2(R1, ) onto the space of entire functions of exponential type ? T which are square summable on the line with respect to the measure dΔ(γ) = ¦ h(γ)¦2, and let G denote the operator of multiplication by a suitably restricted complex valued function g. It is shown that if 2 + 1)?1log ¦ h(γ)¦ is summable, if ¦ h ¦?2 is locally summable, and if hh# belongs to the span in L of e?iyTH:T ? 0, in which h is chosen to be an outer function and h#(γ) agrees with the complex conjugate of h(γ) on the line, then
lim traceT↑∞{(PTGPT)n ? PTGnPT}
exists and is independent of h for every positive integer n. This extends the range of validity of a formula due to Mark Kac who evaluated this limit in the special case h = 1 using a different formalism. It also extends earlier results of the author which were established under more stringent conditions on h. The conclusions are based in part upon a preliminary study of a more general class of projections.  相似文献   

16.
Let ψ be convex with respect to ?, B a convex body in Rn and f a positive concave function on B. A well-known result by Berwald states that 1¦B¦B ψ(f(x)) dx ? n ∝01 ψ(ξt)(1 ? t)n ? 1) dt (1) if ξ is chosen such that 1¦B¦B ?(f(x)) dx = n ∝01 ?(ξt)(1 ? t)n ? 1) dt.The main purpose in this paper is to characterize those functions f : BR+ such that (1) holds.  相似文献   

17.
In this paper, the problem of phase reconstruction from magnitude of multidimensional band-limited functions is considered. It is shown that any irreducible band-limited function f(z1…,zn), zi ? C, i=1, …, n, is uniquely determined from the magnitude of f(x1…,xn): | f(x1…,xn)|, xi ? R, i=1,…, n, except for (1) linear shifts: i(α1z1+…+αn2n+β), β, αi?R, i=1,…, n; and (2) conjugation: f1(z11,…,zn1).  相似文献   

18.
Let H = ?Δ + VE(¦x¦)+ V(x) be a Schrödinger operator in Rn. Here VE(¦x¦) is an “exploding” radially symmetric potential which is at least C2 monotone nonincreasing and O(r2) as r → ∞. V is a general potential which is short range with respect to VE. In particular, VE  0 leads to the “classical” short-range case (V being an Agmon potential). Let Λ = limr → ∞VE(r) and R(z) = (H ? z)?1, 0 < Im z, Λ < Re z < ∞. It is shown that R(z) can be extended continuously to Im z = 0, except possibly for a discrete subset N?(Λ, ∞), in a suitable operator topology B(L, L1). And L ? L2(Rn) is a weighted L2-space; H is then absolutely continuous over (Λ, ∞), except possibly for a discrete set of eigenvalues. The corresponding eigenfunctions are shown to be rapidly decreasing.  相似文献   

19.
Let A and B be uniformly elliptic operators of orders 2m and 2n, respectively, m > n. We consider the Dirichlet problems for the equations (?2(m ? n)A + B + λ2nI)u? = f and (B + λ2nI)u = f in a bounded domain Ω in Rk with a smooth boundary ?Ω. The estimate ∥ u? ? u ∥L2(Ω) ? C? ¦ λ ¦?2n + 1(1 + ? ¦ λ ¦)?1 ∥ f ∥L2(Ω) is derived. This result extends the results of [7, 9, 10, 12, 14, 15, 18]by giving estimates up to the boundary, improving the rate of convergence in ?, using lower norms, and considering operators of higher order with variable coefficients. An application to a parabolic boundary value problem is given.  相似文献   

20.
The composition of two Calderón-Zygmund singular integral operators is given explicitly in terms of the kernels of the operators. For φ?L1(Rn) and ε = 0 or 1 and ∝ φ = 0 if ε = 0, let Ker(φ) be the unique function on Rn + 1 homogeneous of degree ?n ? 1 of parity ε that equals φ on the hypersurface x0 = 1. Let Sing(φ, ε) denote the singular integral operator Sing(φ, ε)f(x0, x) = limδ → 0 ∝∝¦y0¦ ? δf(x0 ? y0, x ? y), Ker(φ)(y0, y) dy0 dy, which exists under suitable growth conditions on ? and φ. Then Sing(φ, ε1) Sing(ψ, ε2)f = ?2π2(∝ φ)(∝ ψ)f + Sing(A, ε1, + ε2)f, where
A(x)=limδ→0∫∫δ?|λ|?δ?1|λ+1|?1+?2n|λ|?2θ(x+λ(x?y))ψ(y)dλdy
(with notation ¦t¦0a = ¦t¦aand ¦t¦1a = ¦t¦asgn t). This result is used to show that the mapping ψA is a classical pseudo-differential operator of order zero if φ is smooth, with top-order symbol
ω0(x,?)=?πiθ(?)∫θ(x?y)sgn y·?dy if ?1=1
,
=?2θ(?)∫θ(x?y)log|y·?|dy if ?1=0
where θ(ξ) is a cut-off function. These results are generalized to singular integrals with mixed homogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号