首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the existence of mild solutions for the nonlocal Cauchy problemu′(t)=Au(t)+f(t,u(t)),t∈[t0,t0+T],u(t0)+g(u)=u0,and give new criterions, which extend some existing results in this area.  相似文献   

2.
3.
4.
5.
6.
7.
We improve several results published from 1950 up to 1982 on matrix functions commuting with their derivative, and establish two results of general interest. The first one gives a condition for a finite-dimensional vector subspace E(t) of a normed space not to depend on t, when t varies in a normed space. The second one asserts that if A is a matrix function, defined on a set ?, of the form A(t)= U diag(B1(t),…,Bp(t)) U-1, t ∈ ?, and if each matrix function Bk has the polynomial form
Bk(t)=i=0αkfki(t)Cki, t∈ ?, k∈{1,…,p}
then A itself has the polynomial form
A(t)=i=0d?1fi(t)Ci,t∈?
, where
d=k=1pdk
, dk being the degree of the minimal polynomial of the matrix Ck, for every k ∈ {1,…,p}.  相似文献   

8.
This paper treats the quasilinear, parabolic boundary value problem uxx ? ut = ??(x, t, u)u(0, t) = ?1(t); u(l, t) = ?2(t) on an infinite strip {(x, t) ¦ 0 < x < l, ?∞ < t < ∞} with the functions ?(x, t, u), ?1(t), ?2(t) being periodic in t. The major theorem of the paper gives sufficient conditions on ?(x, t, u) for this problem to have a periodic solution u(x, t) which may be constructed by successive approximations with an integral operator. Some corollaries to this theorem offer more explicit conditions on ?(x, t, u) and indicate a method for determining the initial estimate at which the iteration may begin.  相似文献   

9.
10.
11.
Analyticity in t of solutions u(t) of nonlinear evolution equations of the form u′ + A(t, u)u = ?(t, u), t > 0, u(0) = u0, is established under suitable conditions on A(t, u), ?(t, u), and u0. An application is given to quasilinear parabolic equations.  相似文献   

12.
A variety of continuous parameter Markov chains arising in applied probability (e.g. epidemic and chemical reaction models) can be obtained as solutions of equations of the form
XN(t)=x0+∑1NlY1N ∫t0 f1(XN(s))ds
where l∈Zt, the Y1 are independent Poisson processes, and N is a parameter with a natural interpretation (e.g. total population size or volume of a reacting solution).The corresponding deterministic model, satisfies
X(t)=x0+ ∫t0 ∑ lf1(X(s))ds
Under very general conditions limN→∞XN(t)=X(t) a.s. The process XN(t) is compared to the diffusion processes given by
ZN(t)=x0+∑1NlB1N∫t0 ft(ZN(s))ds
and
V(t)=∑ l∫t0f1(X(s))dW?1+∫t0 ?F(X(s))·V(s)ds.
Under conditions satisfied by most of the applied probability models, it is shown that XN,ZN and V can be constructed on the same sample space in such a way that
XN(t)=ZN(t)+OlogNN
and
N(XN(t)?X(t))=V(t)+O log NN
  相似文献   

13.
In this paper, we study the problem−diva(x,u,u)−divφ(u)+g(x,u)=finΩin the setting of the weighted sobolev space W01,p(Ω,ν). The main novelty of our work is L estimates on the solutions, and the existence of a weak and renormalized solution.  相似文献   

14.
The main result is the following. Let Ω be a bounded Lipschitz domain in Rd, d?2. Then for every f∈Ld(Ω) with ∫f=0, there exists a solution u∈C0(Ω)∩W1,d(Ω) of the equation divu=f in Ω, satisfying in addition u=0 on and the estimate
6u6L+6u6W1,d?C6f6Ld,
where C depends only on Ω. However one cannot choose u depending linearly on f. To cite this article: J. Bourgain, H. Brezis, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 973–976.  相似文献   

15.
According to a result of A. Ghizzetti, for any solution y(t) of the differential equation where y(n)(t)+ i=0n?1 gi(t) yi(t)=0 (t ? 1), 1 ¦gi(x)¦xn?I?1 dx < ∞ (0 ?i ? n ?1, either y(t) = 0 for t ? 1 or there is an integer r with 0 ? r ? n ? 1 such that limt → ∞ y(t)tr exists and ≠0. Related results are obtained for difference and differential inequalities. A special case of the former has interesting applications in the study of orthogonal polynomials.  相似文献   

16.
We study the Schrödinger equation iy′+Δy+qy=0 on Ω×(0,T) with Dirichlet boundary data y|?Ω×(0,T) and initial condition y|Ω×{0} and we consider the inverse problem of determining the potential q(x), x∈Ω when ?y|Γ0×(0,T) is given, where Γ0 is an open subset of satisfying an appropriate geometrical condition. The detailed proof will be given in [1]. To cite this article: L. Baudouin, J.-P. Puel, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 967–972.  相似文献   

17.
In this paper we study the asymptotic behavior of solutions to the mixed initial boundary value problem for the system of nonlinear parabolic equations
?ut+Lu=f(x.t.u.v)?vt+Mv=g(x,t,u,v)
We show, under suitable technical assumptions, that these solutions converge to solutions of the Dirichlet problem for the corresponding limiting elliptic system, provided that the solution of the Dirichlet problem is unique.  相似文献   

18.
In this paper we study the behavior of solutions of some quasilinear parabolic equations of the form
(?u?t) ? i=1n (ddxi) ai(x, t, u, ux) + a(x, t, u, ux)u + f(x, t) = O,
as t → ∞. In particular, the solutions of these equations will decay to zero as t → ∞ in the L norm.  相似文献   

19.
We construct two d-dimensional independent diffusions Xta=a+∫0tu(Xsa,s)ds+νBta,Xtb=b+∫0tu(Xsb,s)ds+νBtb, with the same viscosity ν≠0 and the same drift u(x,t)=(ta(x)v1+(1?p)ρtb(x)v2)/(ta(x)+(1?p)ρtb(x)), where ρta,ρtb are respectively the density of Xta and Xtb. Here a,b,v1,v2Rd and p∈(0,1) are given. We show that t(x)=pρta(x)+(1?p)ρtb(x),u(x,t):t?0,x∈Rd) is the unique weak solution of the following pressureless gas system
S(d,ν)?t(ρ)+j=1d?xj(ujρ)=ν22Δ(ρ),?t(uiρ)+j=1d?xj(uiujρ)=ν22Δ(uiρ),?1?i?d,
such that ρt(x)dx→pδa+(1?p)δb,u(x,t)ρt(x)dx→pv1δa+(1?p)v2δb as t→0+. To cite this article: A. Dermoune, S. Filali, C. R. Acad. Sci. Paris, Ser. I 337 (2003).  相似文献   

20.
This paper deals with asymptotic behavior for (weak) solutions of the equation utt ? Δu + β(ut) ? ?(t, x), on R+ × Ω; u(t, x) = 0, on R+ × ?Ω. If ?∈L∞(R+,L2(Ω)) and β is coercive, we prove that the solutions are bounded in the energy space, under weaker assumptions than those used by G. Prouse in a previous work. If in addition ?t∈S2(R+,L2(Ω)) and ? is srongly almost-periodic, we prove for strongly monotone β that all solutions are asymptotically almost-periodic in the energy space. The assumptions made on β are much less restrictive than those made by G. Prouse: mainly, we allow β to be multivalued, and in the one-dimensional case β need not be defined everywhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号