首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given a Lie group G with a bi-invariant metric and a compact Lie subgroup K, Bittencourt and Ripoll used the homogeneous structure of quotient spaces to define a Gauss map ${\mathcal{N}:M^{n}\rightarrow{\mathbb{S}}}$ on any hypersupersurface ${M^{n}\looparrowright G/K}$ , where ${{\mathbb{S}}}$ is the unit sphere of the Lie algebra of G. It is proved in Bittencourt and Ripoll (Pacific J Math 224:45–64, 2006) that M n having constant mean curvature (CMC) is equivalent to ${\mathcal{N}}$ being harmonic, a generalization of a Ruh–Vilms theorem for submanifolds in the Euclidean space. In particular, when n = 2, the induced quadratic differential ${\mathcal{Q}_{\mathcal{N}}:=(\mathcal{N}^{\ast}g)^{2,0}}$ is holomorphic on CMC surfaces of G/K. In this paper, we take ${G/K={\mathbb{S}}^{2}\times{\mathbb{R}}}$ and compare ${\mathcal{Q}_{\mathcal{N}}}$ with the Abresch–Rosenberg differential ${\mathcal{Q}}$ , also holomorphic for CMC surfaces. It is proved that ${\mathcal{Q}=\mathcal{Q}_{\mathcal{N}}}$ , after showing that ${\mathcal{N}}$ is the twisted normal given by (1.5) herein. Then we define the twisted normal for surfaces in ${{\mathbb{H}}^{2}\times{\mathbb{R}}}$ and prove that ${\mathcal{Q}=\mathcal{Q}_{\mathcal{N}}}$ as well. Within the unified model for the two product spaces, we compute the tension field of ${\mathcal{N}}$ and extend to surfaces in ${{\mathbb{H}}^{2}\times{\mathbb{R}}}$ the equivalence between the CMC property and the harmonicity of ${\mathcal{N}.}$   相似文献   

2.
We provide a matrix invariant for isometry classes of p-tuples of points in the Grassmann manifold ${G_{n}\left(\mathbb{K}^{d}\right) }$ ( ${\mathbb{K=\mathbb{R}}}$ or ${\mathbb{C}}$ ). This invariant fully characterizes the p-tuple. We use it to classify the regular p-tuples of ${G_{2}\left(\mathbb{R}^{d}\right) }$ , ${G_{3}\left( \mathbb{R}^{d}\right) }$ and ${G_{2}\left( \mathbb{C}^{d}\right) }$ .  相似文献   

3.
Let $ {\user1{\mathcal{C}}} $ be the commuting variety of the Lie algebra $ \mathfrak{g} $ of a connected noncommutative reductive algebraic group G over an algebraically closed field of characteristic zero. Let $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ be the singular locus of $ {\user1{\mathcal{C}}} $ and let $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ be the locus of points whose G-stabilizers have dimension > rk G. We prove that: (a) $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ is a nonempty subset of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ ; (b) $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{irr}}}} = 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ where the maximum is taken over all simple ideals $ \mathfrak{a} $ of $ \mathfrak{g} $ and $ l{\left( \mathfrak{a} \right)} $ is the “lacety” of $ \mathfrak{a} $ ; and (c) if $ \mathfrak{t} $ is a Cartan subalgebra of $ \mathfrak{g} $ and $ \alpha \in \mathfrak{t}^{*} $ root of $ \mathfrak{g} $ with respect to $ \mathfrak{t} $ , then $ \overline{{G{\left( {{\text{Ker}}\,\alpha \times {\text{Ker }}\alpha } \right)}}} $ is an irreducible component of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ of codimension 4 in $ {\user1{\mathcal{C}}} $ . This yields the bound $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ and, in particular, $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 2 $ . The latter may be regarded as an evidence in favor of the known longstanding conjecture that $ {\user1{\mathcal{C}}} $ is always normal. We also prove that the algebraic variety $ {\user1{\mathcal{C}}} $ is rational.  相似文献   

4.
Let ${K=\mathbb{Q}(\theta)}$ be an algebraic number field with θ in the ring A K of algebraic integers of K and f(x) be the minimal polynomial of θ over the field ${\mathbb{Q}}$ of rational numbers. For a rational prime p, let ${\bar{f}(x)\,=\,\bar{g}_{1}(x)^{e_{1}}....\bar{g}_{r}(x)^{e_{r}}}$ be the factorization of the polynomial ${\bar{f}(x)}$ obtained by reducing coefficients of f(x) modulo p into a product of powers of distinct irreducible polynomials over ${\mathbb{Z}/p\mathbb{Z}}$ with g i (x) monic. Dedekind proved that if p does not divide [ ${A_{K}:\mathbb{Z}}$ [θ]], then ${pA_{K}=\wp_{1}^{e_{1}}\ldots\wp_{r}^{e_{r}}}$ , where ${\wp_{1},\ldots,\wp_{r}}$ are distinct prime ideals of A K , ${\wp_{i}=pA_{K}+g_{i}(\theta)A_{K}}$ having residual degree equal to the degree of ${\bar{g}_{i}(x)}$ . He also proved that p does not divide [ ${A_{K}:\mathbb{Z}}$ [θ]] if and only if for each i, either e i  = 1 or ${\bar{g}_{i}(x)}$ does not divide ${\bar{M}(x)}$ where ${M(x)=\frac{1}{p}(f(x)-g_{1}(x)^{e_{1}}....g_{r}(x)^{e_{r}})}$ . Our aim is to give a weaker condition than the one given by Dedekind which ensures that if the polynomial ${\bar{f}(x)}$ factors as above over ${\mathbb{Z}/p\mathbb{Z}}$ , then there are exactly r prime ideals of A K lying over p, with respective residual degrees ${\deg \bar {g}_{1}(x),...,\deg \bar {g}_{r}(x)}$ and ramification indices e 1, ..., e r . In this paper, the above problem has been dealt with in a more general situation when the base field is a valued field (K, v) of arbitrary rank and K(θ) is any finite extension of K.  相似文献   

5.
In this note we prove the following: Let n?≥ 2 be a fixed integer. A system of additive functions ${A_{1},A_{2},\ldots,A_{n}:\mathbb{R} \to\mathbb{R}}$ is linearly dependent (as elements of the ${\mathbb{R}}$ vector space ${\mathbb{R}^{\mathbb{R}}}$ ), if and only if, there exists an indefinite quadratic form ${Q:\mathbb{R}^{n}\to\mathbb{R} }$ such that ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\geq 0}$ or ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\leq 0}$ holds for all ${x\in\mathbb{R}}$ .  相似文献   

6.
We consider a real reductive dual pair (G′, G) of type I, with rank ${({\rm G}^{\prime}) \leq {\rm rank(G)}}$ . Given a nilpotent coadjoint orbit ${\mathcal{O}^{\prime} \subseteq \mathfrak{g}^{{\prime}{*}}}$ , let ${\mathcal{O}^{\prime}_\mathbb{C} \subseteq \mathfrak{g}^{{\prime}{*}}_\mathbb{C}}$ denote the complex orbit containing ${\mathcal{O}^{\prime}}$ . Under some condition on the partition λ′ parametrizing ${\mathcal{O}^{\prime}}$ , we prove that, if λ is the partition obtained from λ by adding a column on the very left, and ${\mathcal{O}}$ is the nilpotent coadjoint orbit parametrized by λ, then ${\mathcal{O}_\mathbb{C}= \tau (\tau^{\prime -1}(\mathcal{O}_\mathbb{C}^{\prime}))}$ , where ${\tau, \tau^{\prime}}$ are the moment maps. Moreover, if ${chc(\hat\mu_{\mathcal{O}^{\prime}}) \neq 0}$ , where chc is the infinitesimal version of the Cauchy-Harish-Chandra integral, then the Weyl group representation attached by Wallach to ${\mu_{\mathcal{O}^{\prime}}}$ with corresponds to ${\mathcal{O}_\mathbb{C}}$ via the Springer correspondence.  相似文献   

7.
A Gizatullin surface is a normal affine surface V over $ \mathbb{C} $ , which can be completed by a zigzag; that is, by a linear chain of smooth rational curves. In this paper we deal with the question of uniqueness of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations on such a surface V up to automorphisms. The latter fibrations are in one to one correspondence with $ \mathbb{C}_{{\text{ + }}} $ -actions on V considered up to a “speed change”. Non-Gizatullin surfaces are known to admit at most one $ \mathbb{A}^{1} $ -fibration VS up to an isomorphism of the base S. Moreover, an effective $ \mathbb{C}^{ * } $ -action on them, if it does exist, is unique up to conjugation and inversion t $ \mapsto $ t ?1 of $ \mathbb{C}^{ * } $ . Obviously, uniqueness of $ \mathbb{C}^{ * } $ -actions fails for affine toric surfaces. There is a further interesting family of nontoric Gizatullin surfaces, called the Danilov-Gizatullin surfaces, where there are in general several conjugacy classes of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations, see, e.g., [FKZ1]. In the present paper we obtain a criterion as to when $ \mathbb{A}^{{\text{1}}} $ -fibrations of Gizatullin surfaces are conjugate up to an automorphism of V and the base $ S \cong \mathbb{A}^{{\text{1}}} $ . We exhibit as well large subclasses of Gizatullin $ \mathbb{C}^{ * } $ -surfaces for which a $ \mathbb{C}^{ * } $ -action is essentially unique and for which there are at most two conjugacy classes of $ \mathbb{A}^{{\text{1}}} $ -fibrations over $ \mathbb{A}^{{\text{1}}} $ .  相似文献   

8.
In this paper, we show that the extended modular group ${\hat{\Gamma}}$ acts on ${\hat{\mathbb{Q}}}$ transitively and imprimitively. Then the number of orbits of ${\hat{\Gamma} _{0}(N)}$ on ${\hat{\mathbb{Q}}}$ is calculated and compared with the number of orbits of ${\Gamma _{0}(N)}$ on ${\hat{\mathbb{Q}}}$ . Especially, we obtain the graphs ${\hat{G}_{u, N}}$ of ${\hat{\Gamma}_{0}(N)}$ on ${\hat{\mathbb{Q}}}$ , for each ${N\in\mathbb{N}}$ and each unit ${u \in U_{N} }$ , then we determine the suborbital graph ${\hat{F}_{u,N}}$ . We also give the edge conditions in ${\hat{G}_{u, N}}$ and the necessary and sufficient conditions for a circuit to be triangle in ${\hat{F}_{u, N}.}$   相似文献   

9.
We provide an example of a discontinuous involutory additive function ${a: \mathbb{R}\to \mathbb{R}}$ such that ${a(H) \setminus H \ne \emptyset}$ for every Hamel basis ${H \subset \mathbb{R}}$ and show that, in fact, the set of all such functions is dense in the topological vector space of all additive functions from ${\mathbb{R}}$ to ${\mathbb{R}}$ with the Tychonoff topology induced by ${\mathbb{R}^{\mathbb{R}}}$ .  相似文献   

10.
We classify hypersurfaces of rank two of Euclidean space ${\mathbb{R}^{n+1}}$ that admit genuine isometric deformations in ${\mathbb{R}^{n+2}}$ . That an isometric immersion ${\hat{f}\colon M^n \to \mathbb{R}^{n+2}}$ is a genuine isometric deformation of a hypersurface ${f\colon M^n\to\mathbb{R}^{n+1}}$ means that ${\hat f}$ is nowhere a composition ${\hat f=\hat F\circ f}$ , where ${\hat{F} \colon V\subset \mathbb{R}^{n+1} \to\mathbb{R}^{n+2}}$ is an isometric immersion of an open subset V containing the hypersurface.  相似文献   

11.
We introduce the graded version of the antisimple primitive radical $ {\user1{\mathcal{S}\mathcal{J}}} $ , the graded antisimple primitive radical $ {\user1{\mathcal{S}\mathcal{J}}}_{G} $ . We show that $ {\user1{\mathcal{S}\mathcal{J}}}_{G} = {\user1{\mathcal{S}\mathcal{J}}}_{{{\text{ref}}}} = {\user1{\mathcal{S}\mathcal{J}}}^{G} $ when |G| < ∞, where $ {\user1{\mathcal{S}\mathcal{J}}}_{{{\text{ref}}}} $ denotes the reflected antisimple primitive radical and $ {\user1{\mathcal{S}\mathcal{J}}}^{G} $ denotes the restricted antisimple primitive radical. Furthermore, we discuss the graded supplementing radical of $ {\user1{\mathcal{S}\mathcal{J}}}^{G} $ .  相似文献   

12.
Let ${\mathbb{Q}^3}$ be the moduli space of oriented circles in the three dimensional unit sphere ${\mathbb{S}^3}$ . Given a natural complex structure such space becomes a three dimensional complex manifold, with a M?bius invariant Hermitian metric h of type (2, 1). Up to M?bius transformations, all geodesics with respect to the Lorentz metric g = Re(h) on ${\mathbb{Q}^3}$ are determined to form a one-parameter family of circles on a helicoid in a space form ${\mathbb{R}^3, \mathbb{H}^3}$ or ${\mathbb{S}^{3}}$ , resp. We show also that any two oriented circles in ${\mathbb{S}^3}$ are connected by countably infinitely many geodesics in ${\mathbb{Q}^3}$ .  相似文献   

13.
Bijective operators conserving the indefinite scalar product on a Krein space ${(\mathcal{K}, J)}$ are called J-unitary. Such an operator T is defined to be ${\mathbb{S}^1}$ -Fredholm if T?z 1 is Fredholm for all z on the unit circle ${\mathbb{S}^1}$ , and essentially ${\mathbb{S}^1}$ -gapped if there is only discrete spectrum on ${\mathbb{S}^1}$ . For paths in the ${\mathbb{S}^1}$ -Fredholm operators an intersection index similar to the Conley–Zehnder index is introduced. The strict subclass of essentially ${\mathbb{S}^1}$ -gapped operators has a countable number of components which can be distinguished by a homotopy invariant given by the signature of J restricted to the eigenspace of all eigenvalues on ${\mathbb{S}^1}$ . These concepts are illustrated by several examples.  相似文献   

14.
In this paper, we prove that every lax generalized Veronesean embedding of the Hermitian unital ${\mathcal{U}}$ of ${\mathsf{PG}(2,\mathbb{L}), \mathbb{L}}$ a quadratic extension of the field ${\mathbb{K}}$ and ${|\mathbb{K}| \geq 3}$ , in a ${\mathsf{PG}(d,\mathbb{F})}$ , with ${\mathbb{F}}$ any field and d ≥ 7, such that disjoint blocks span disjoint subspaces, is the standard Veronesean embedding in a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ (and d = 7) or it consists of the projection from a point ${p \in \mathcal{U}}$ of ${\mathcal{U}{\setminus} \{p\}}$ from a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ into a hyperplane ${\mathsf{PG}(6,\mathbb{K}^{\prime})}$ . In order to do so, when ${|\mathbb{K}| >3 }$ we strongly use the linear representation of the affine part of ${\mathcal{U}}$ (the line at infinity being secant) as the affine part of the generalized quadrangle ${\mathsf{Q}(4,\mathbb{K})}$ (the solid at infinity being non-singular); when ${|\mathbb{K}| =3}$ , we use the connection of ${\mathcal{U}}$ with the generalized hexagon of order 2.  相似文献   

15.
Let ${\mathcal{P}}$ be a nonparametric probability model consisting of smooth probability densities and let ${\hat{p}_{n}}$ be the corresponding maximum likelihood estimator based on n independent observations each distributed according to the law ${\mathbb{P}}$ . With $\hat{\mathbb{P}}_{n}$ denoting the measure induced by the density ${\hat{p}_{n}}$ , define the stochastic process ${\hat{\nu}}_{n}: f\longmapsto \sqrt{n} \int fd({\hat{\mathbb{P}}}_{n} -\mathbb{P})$ where f ranges over some function class ${\mathcal{F}}$ . We give a general condition for Donsker classes ${\mathcal{F}}$ implying that the stochastic process $\hat{\nu}_{n}$ is asymptotically equivalent to the empirical process in the space ${\ell ^{\infty }(\mathcal{F})}$ of bounded functions on ${ \mathcal{F}}$ . This implies in particular that $\hat{\nu}_{n}$ converges in law in ${\ell ^{\infty }(\mathcal{F})}$ to a mean zero Gaussian process. We verify the general condition for a large family of Donsker classes ${\mathcal{ F}}$ . We give a number of applications: convergence of the probability measure ${\hat{\mathbb{P}}_{n}}$ to ${\mathbb{P}}$ at rate ${\sqrt{n}}$ in certain metrics metrizing the topology of weak(-star) convergence; a unified treatment of convergence rates of the MLE in a continuous scale of Sobolev-norms; ${\sqrt{n}}$ -efficient estimation of nonlinear functionals defined on ${\mathcal{P}}$ ; limit theorems at rate ${\sqrt{n}}$ for the maximum likelihood estimator of the convolution product ${\mathbb{P\ast P}}$ .  相似文献   

16.
17.
We deduce that a connected compact immersed minimal surface in ${{\mathbb{H}^{2}\times \mathbb{R}}}$ whose boundary has an injective horizontal projection on an admissible convex curve in ${\partial_\infty{\mathbb{H}^{2}\times \mathbb{R}}}$ , and satisfies an admissible bounded slope condition, is the Morrey’s solution of the Plateau problem and is a horizontal minimal graph. We prove that there is no entire horizontal minimal graph in ${{\mathbb{H}^{2}\times \mathbb{R}}}$ .  相似文献   

18.
19.
Let ${\Omega \subset \mathbb{R}^{N}}$ be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ${\partial\Omega}$ . We show that the solution to the linear first-order system $$\nabla \zeta = G\zeta, \, \, \zeta|_\Gamma = 0 \quad \quad \quad (1)$$ is unique if ${G \in \textsf{L}^{1}(\Omega; \mathbb{R}^{(N \times N) \times N})}$ and ${\zeta \in \textsf{W}^{1,1}(\Omega; \mathbb{R}^{N})}$ . As a consequence, we prove $$||| \cdot ||| : \textsf{C}_{o}^{\infty}(\Omega, \Gamma; \mathbb{R}^{3}) \rightarrow [0, \infty), \, \, u \mapsto \parallel {\rm sym}(\nabla uP^{-1})\parallel_{\textsf{L}^{2}(\Omega)}$$ to be a norm for ${P \in \textsf{L}^{\infty}(\Omega; \mathbb{R}^{3 \times 3})}$ with Curl ${P \in \textsf{L}^{p}(\Omega; \mathbb{R}^{3 \times 3})}$ , Curl ${P^{-1} \in \textsf{L}^{q}(\Omega; \mathbb{R}^{3 \times 3})}$ for some p, q > 1 with 1/p + 1/q = 1 as well as det ${P \geq c^+ > 0}$ . We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ${\Phi \in \textsf{H}^{1}(\Omega; \mathbb{R}^{3})}$ satisfy sym ${(\nabla\Phi^\top\nabla\Psi) = 0}$ for some ${\Psi \in \textsf{W}^{1,\infty}(\Omega; \mathbb{R}^{3}) \cap \textsf{H}^{2}(\Omega; \mathbb{R}^{3})}$ with det ${\nabla\Psi \geq c^+ > 0}$ . Then, there exist a constant translation vector ${a \in \mathbb{R}^{3}}$ and a constant skew-symmetric matrix ${A \in \mathfrak{so}(3)}$ , such that ${\Phi = A\Psi + a}$ .  相似文献   

20.
Let ${\mathfrak{c} := 2^{\aleph_0}}$ . We give a family of pairwise incomparable clones on ${{\mathbb N}}$ with ${2^{\mathfrak{c}}}$ members, all with the same unary fragment, namely the set of all unary operations. We also give, for each n, a family of ${2^{\mathfrak{c}}}$ clones all with the same n-ary fragment, and all containing the set of all unary operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号