首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sols of zero-valence copper are prepared via the chemical reduction of Cu(II) ions by hydrazine borane in aqueous solutions of high-molecular-mass poly(acrylic acid), which forms stable complexes with copper ions at 20°C in a wide pH range. The study of the composition of coordination centers, the ligand surrounding of metal ions, and the character of distribution of copper ions over poly(acrylic acid) coils in a wide range of solution compositions and pH values shows that the size of copper nanoparticles in the sols can be controlled by varying the ratio between ligand groups (carboxylate anions in poly(acrylic acid)) and copper ions in the reaction system during the synthesis of sols. This effect can be accomplished either by variation in the initial composition of solution or change in pH (the degree of ionization of the initial poly(acrylic acid) in the presence of copper ions).  相似文献   

2.
Copper sols are prepared via the reduction of copper ions with hydrazine borane in dilute aqueous solutions of mixtures of the PAA-Cu2+ complex and poly(ethylene glycols) of various molecular masses at PEG: PAA = 0.25 base-mol/base-mol and PAA: Cu2+ = 10 base-mol/mol in the pH range 4.0–7.0. The stability of sols against oxidation (dissolution) or aggregation (enlargement) of metal nanoparticles is much higher than that of sols prepared in the absence of PEG. With an increase in the initial pH or a decrease in the molecular mass of PEG, the formed copper nanoparticles are much larger (no less than 20 nm in diameter) than copper nanoparticles occurring in the sol prepared in a solution of the PAA double complex with Cu2+ ions and high-molecular-mass PEG at a low initial pH (3–10 nm in diameter). Copper nanoparticles in sols prepared in solutions of complexes based on the high-molecular-mass PEG do not aggregate during exposure, thereby indicating the high stability of polymer screens on their surfaces.  相似文献   

3.
Even though the addition of modified cyclodextrins (modified CDs) accelerates the precipitation in aqueous solutions of poly(ethylene glycol) (PEG) and α-cyclodextrin (α-CD) the final amount of formed solid complex remains unchanged, with no significant presence of modified CDs detected by MALDI-TOF mass spectrometry. Thus unsuitability of kinetic turbidity measurements for determination of binding parameters was confirmed. On the other hand, theoretical calculations based on a model of a chain of freely accessible binding sites demonstrated that the results do not necessarily contradict the finding that individual modified CD molecules can thread onto PEG chains with the efficiency comparable to that of natural (unmodified) α-CD.  相似文献   

4.
The effects of urea on aqueous solutions of both poly(methacrylic acid (PMA) and poly(acrylic acid) (PAA) have been investigated by using potentiometry, viscometry and study of the fluorescence of Auramine O, a cationic dye. The viscosity behaviour of unionized PMA obtained from direct dissolution of solid powder shows that the unneutralized macromolecules can be associated in water. The stability of such “aggregates” seems weak as indicated by their disappearance as soon as the charge density is very low. For PMA salt solution percolated through a cation (H+) exchange resin column, no association is observed. The pH-dependent conformational behaviour of PMA which, contrary to PAA, presents compact conformations in water at low charge density is discussed in terms of solvophobic/solvophilic interactions. It is shown that, even for urea concentration up to 8 M, the compact conformations of PMA are not completely destroyed. The formation of H+/urea complex is taken into account.  相似文献   

5.
Surfaces carrying hydrophilic polymer brushes were prepared from poly(styrene)-poly(acrylic acid) and poly(styrene)-poly(ethylene oxide) diblock copolymers, respectively, using a Langmuir-Blodgett technique and employing poly(styrene)-coated planar glass as substrates. The electrical properties of these surfaces in aqueous electrolyte were analyzed as a function of pH and KCl concentration using streaming potential/streaming current measurements. From these data, both the zeta potential and the surface conductivity could be obtained. The poly(acrylic acid) brushes are charged due to the dissociation of carboxylic acid groups and give theoretical surface potentials of -160 mV at full dissociation in 10(-)(3) M solutions. The surface conductivity of these brushes is enormous under these conditions, accounting for more than 93% of the total measured surface conductivity. However, the mobility of the ions within the brush was estimated from the density of the carboxylic acid groups and the surface conductivity data to be only about 14% of that of free ions. The poly(ethylene oxide) (PEO) brushes effectively screen the charge of the underlying substrate, giving a very low zeta potential except when the ionic strength is very low. From the data, a hydrodynamic layer thickness of the PEO brushes could be estimated which is in good agreement with independent experiments (neutron reflectivity) and theoretical estimates. The surface conductivity in this system was slightly lower than that of the polystyren substrate. This also indicates that no significant amount of preferentially, i.e., nonelectrostatically attracted, ions taken up in the brush.  相似文献   

6.
The densities of aqueous solutions of some poly(ethylene glycols) (mono-, di-, tri-, and tetraethylene glycol, and four carbowaxes with a mean molecular weight ranging from 600 to 15,000), and of di-, tri-, and tetraethylene glycol dimethyl ether have been determined at 25°C, in the concentration range 5–100 g/liter. From these data, the limiting partial specific and/or molar volume of the solute has been calculated. A value of 37.0 ml/monomole has been evaluated for the partial molar volume of the repeating unit ? CH2CH2O? , and has been found independent of both terminal groups and chain length. The results suggest that the ethylene units in higher polymers are accessible to the solvent as easily as in oligomers, and support an “open” or extended conformation of the poly(ethylene glycol) chain in aqueous dilute solution. This interpretation has been confirmed by a comparison of the experimental values of partial molar volume with the values calculated by semiempirical models.  相似文献   

7.
The solubilities of amino acids have been measured in water and aqueous poly(ethylene glycol) (PEG) solutions as a function of temperature and PEG concentration. The free energies of transfer from water to aqueous PEG solutions forl-alanine,l-valine,l-isoleucine andl-leucine were positive, while those forl-phenylalanine andl-tryptophan were negative. The corresponding enthalpies of transfer were almost zero for all amino acids. The equilibrium constants of the binding of amino acids to PEG chain were estimated from the solubility data. Amino acids with larger hydrophobicity are bound more strongly to the PEG chain due to the hydrophobic interaction between the methylene groups of PEG and the side chain of amino acid. The equilibrium constants showed a correlation with the dynamic hydration number (n DHN) which expresses the hydration properties of amino acids in aqueous solution.  相似文献   

8.
The volume and compressibility changes on mixing aqueous solutions of the amino acid and poly(ethylene glycol) were measured with a vibration densimeter and a sing-around velocimeter at 298.15 K. For the system of alanine-PEG-H2O, the additivity rule for the mean apparent molal volume and compressibility at infinite dilution held, and the excess volume and compressibility changes on mixing were obtained. For the system of glycine-PEG-H2O, the additivity rule for the mean apparent molal compressibility at infinite dilution did not hold. While the mean apparent molal volume and compressibility changes were negative and positive for the systems of another amino acid-PEG-H2O, respectively, where amino acids were valine, isoleucine, leucine, phenylalanine, and tryptophan. These results suggest that glycine and alanine are excluded from the hydration layer around PEG chain and the amino acids with a larger side chain than alanine are bound to the PEG chain due to the hydrophobic interaction. The hydration number per monomer around PEG chain was estimated to be 3.9.  相似文献   

9.
The compatibility between poly(aspartic acid) and poly(ethylene glycol) for the formation of an interpolymer complex (IPC) was investigated by dynamic rheology and evaluation of zeta potential values. The homogeneity of the realized IPC was observed by near infrared chemical imagistic (NIR-CI) technique. The data were sustained and underlined by the assessment of the compatibility between the polymeric compounds.  相似文献   

10.
Dilute-semidilute regime crossover in aqueous solutions of partly neutralized poly(acrylic acid) and of its complex with tetradecyltrimethylammonium bromide was studied by light scattering and viscometry methods. The chain charge growth causes the decrease of overlap concentration (c*) and the increase of the entanglements formation concentration (ce), hence, the semidilute unentangled regime of solution expands. Complexation of the polyelectrolyte with an oppositely charged surfactant leads to c* increase and to ce decrease. It is shown that in semidilute entangled solutions the surfactant acts as an effective structuring agent because of the binding of polyelectrolyte chains via surfactant micelles.  相似文献   

11.
The dynamic viscosity of aqueous solutions of poly(acrylic acid) at a polymer concentration of ca. 0.15 g/100 ml has been measured at frequencies from 2 to 500 kHz as a function of degree of polymerization P, degree of neutralization α, and salt (NaCl) concentration Cs. Relaxation spectra have been obtained from the dynamic viscosity. The spectra in the short relaxation time region can be approximated by the Zimm theory for the conformational relaxation of nonionic polymers. The maximum relaxation time τ1 of the Zimm spectra is proportional to P2 and depends rather moderately on α and Cs. Increased deviation is found, however, in the long relaxation time region, in particular for high values of P and α and low values of Cs. The major part of the deviation is interpreted in terms of rotational relaxation of a molecule as a whole. The rotational relaxation time τR is proportional to P3 and increases with increasing α and decreasing Cs. The remaining part of the excess spectra located between τ1 and τR is ascribed to the deviation of the conformational relaxation from the Zimm theory arising from ionization of the polymer.  相似文献   

12.
Ordered structures of micellar aqueous solutions of poly(ethylene glycol) (PEG) monododecylether mixtures [octaethylene glycol monododecylether (C12E8) and poly(ethylene glycol) monododecylether (C12E25)] have been investigated as a function of the C12E8/C12E25 composition by means of X‐ray scattering. C12E8 and C12E25 have different chain lengths of corona PEG, that is, 8 and 25 repeating units, respectively. The following results have been obtained. First, in the C12E8‐rich and C12E25‐rich regions, the mixtures take hexagonal and cubic phases, respectively. The hexagonal phase remains over a wider range of compositions and is more stable for the mixing of the other component than the cubic phase. Second, in the C12E8‐rich region of the cylindrical hexagonal packing, the nearest‐neighbor micellar distance increases, whereas the association number density remains constant, with an increasing amount of mixed C12E25 possessing longer corona chains. Third, in contrast to this, the nearest‐neighbor micellar distance of the body‐centered cubic packing exhibits almost no change, whereas the association number increases as C12E8 of shorter corona chains is increasingly incorporated. Fourth, self‐consistent field calculations reasonably reproduce the experimental findings of the second and third observations. We discuss the phase stability and the structural changes with the composition in terms of differences in the PEG corona‐chain length. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2474–2483, 2005  相似文献   

13.
Interactions of positronium in aqueous solutions of Co2+ and Cu2+ ions have been investigated at room temperature (297 K) at varying concentrations using both lifetime and Doppler broadening of annihilation radiation techniques. In the case of Co2+, the results indicate spin conversion reaction alone. However, in the case of Cu2+, oxidation is predominant with a small contribution of spin conversion reaction. The corresponding rate constants have been evaluated.  相似文献   

14.
Complexes formed from poly(acrylic acid) and poly(2-hydroxyethyl acrylate) were studied in aqueous solutions by viscometric, turbidimetric, FTIR spectroscopic, and thermogravimetric analysis methods. The formation of interpolymer complexes stabilized by hydrogen bonds was observed. It was found that the compositions of these interpolymer complexes are strongly dependent on the concentration of polymers, the order of mixing the solutions, and the pH. It was demonstrated that the complexation ability of poly(2-hydroxyethyl acrylate) is relatively low compared to other known nonionic water-soluble polymers. However, it can be significantly increased via hydrophobic modification of the poly(acrylic acid) using cetyl pyridinium bromide.  相似文献   

15.
In this work the intrinsic viscosity of poly(ethylene glycol)/poly(vinyl pyrrolidone) blends in aqueous solutions were measured at 283.1–313.1 K. The expansion factor of polymer chain was calculated by use of the intrinsic viscosities data. The thermodynamic parameters of polymer solution (the entropy of dilution parameter, the heat of dilution parameter, theta temperature, polymer–solvent interaction parameter and second osmotic virial coefficient) were evaluated by temperature dependence of polymer chain expansion factor. The obtained thermodynamic parameters indicate that quality of water was decreased for solutions of poly(ethylene oxide), poly(vinyl pyrrolidone) and poly(ethylene oxide)/poly(vinyl pyrrolidone) blends by increasing temperature. Compatibility of poly(ethylene oxide)/poly(vinyl pyrrolidone) blends were explained in terms of difference between experimental and ideal intrinsic viscosity and solvent–polymer interaction parameter. The results indicate that the poly(ethylene glycol)/poly(vinyl pyrrolidone) blends were incompatible.  相似文献   

16.
A doubly hydrophilic triblock copolymer poly(acrylic acid)-b-poly(ethylene glycol)-b-poly(acrylic acid) (PAA-b-PEO-b-PAA) with M w/M n = 1.15 was synthesized by atom transfer radical polymerization of t-butyl acrylate (tBA), followed by acidolysis of the PtBA blocks. The pH-sensitive micellization of PAA-b-PEO-b-PAA in acidic solution was investigated by potentiometric titration, fluorescence spectrum, dynamic light scattering and zeta potential. The pK a was 6.6 and 6.0 in deionized water and in 0.1 mol/L NaCl solution, respectively. The copolymer formed micelles composed of a weakly hydrophobic core of complexed PAA and PEO and a hydrophilic PEO shell in 1 mg/mL solution at pH < 5.5 due to hydrogen bonding. The critical micelle concentration was 0.168 mg/mL at pH 2.0. At pH < 4.5, steady and narrow distributed micelles were formed. Increasing pH to 5.0, unsteady and broad distributed micelles were observed. At pH > 5.5, the micelle was destroyed owing to the ionization of the PAA blocks.  相似文献   

17.
Comb-type copolymers of poly(acrylic acid) grafted with poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPSA) side chains form with poly(ethylene glycol), at low pH, water-soluble hydrogen-bonding interpolymer complexes. Turbidimetry, viscometry, and dynamic light scattering measurements suggest that compact, negatively charged, colloidal nanoparticles are formed at pH<3.75. The influence of the structure of the graft copolymers and of the ionic strength of the solution on the size of these nanoparticles was investigated. It was found that their hydrodynamic radius decreases by increasing the molecular mass of the PAMPSA side chains of the graft copolymer and increases with increasing the ionic strength of the solution.  相似文献   

18.
19.
《Fluid Phase Equilibria》1999,155(2):311-325
The viscosities of aqueous solutions of some poly(ethylene glycol)s (PEG) with nominal molecular weights ranging from 300 to 35 000 g mol−1 were determined up to a concentration of 0.3 g cm−3 at 298.15 K. From these data the intrinsic viscosity and the viscosity average molecular weight of the solute were calculated. The viscosity coefficients B were evaluated and hence the partial molar Gibbs free energy of activation of viscous flow of solute at infinite dilution was calculated and interpreted in terms of the relative effects of solute on the ground and transition state solvent. The hydration numbers were determined and compared with available values in the literature.  相似文献   

20.
Loris Pietrelli 《Adsorption》2013,19(5):897-902
Poly(ethylene glycol) (PEG) is a water-soluble polymer commonly found in industrial and domestic wastewaters. In this study the adsorption onto granular activated carbon (GAC) of PEG, of different molecular weights, from aqueous solutions was examined to evaluate its applicability to wastewater treatment. Batch kinetic models have been tested to predict the rate constant of adsorption. The amount of PEG adsorbed on activated carbon depends mainly on the pH, the MW and on the solution characteristics. The adsorption at fixed temperature decrease by MW (PEG-8000 < PEG-3350 < PEG-1450) a polymer chain conformation modification can explain these effect. The large values of adsorption capacity (>350 mg/g) at low and high pH values show a great potential for GAC. The adsorption process can be described well with the Langmuir and the pseudo first order equation. The effective intraparticle diffusion coefficients of PEG molecules in the GAC adsorbent varying according to the MW values in the range 8.45 × 10?3–9.71 × 10?7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号