首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optically stimulated luminescence (OSL) of synthetic stishovite was investigated for a future dating technique of meteor impact craters. Luminescence around 330 nm was measured on the γ-ray irradiated stishovite under two stimulating light sources of infrared laser (830 nm) and blue light emitting diode set (470 nm). Thermoluminescence (TL) studies before and after the OSL measurements showed the intensities around 100–200°C and 220–350°C to increase and those around 350–450°C to decrease. This indicates that a part of deep-trapped charges excited during the OSL measurements were retrapped by shallower traps. The infrared stimulated luminescence (IRSL) after the TL measurement up to 450°C could not be detected, while the blue light stimulated luminescence (BLSL) after TL had about one-tenth of the intensity before TL. This indicates that a part of the charges in shallower traps were detrapped thermally and returned to the deeper traps which were related to BLSL. The result implies that some of the BLSL-related traps are quite stable at room temperature and could be used for geological dating. In addition, two paramagnetic centers produced by sudden release of high pressure in synthesis process were found in the unirradiated stishovite by electron spin resonance (ESR). Their g-factors are g=2.00181 and g=2.00062 for an axial signal and g=2.00305 for the other isotropic signal. These signals could be used for an evidence of impacts if those signals could be stored in geological time.  相似文献   

2.
A new luminescence reader for radioluminescence (RL) measurements is presented. The system allows detection of RL emissions in the near infrared region (IR). Basic bleaching properties of the IR-RL emission of feldspars are investigated. Sunlight-bleaching experiments as a test for sensitivity changes are presented. IR-bleaching experiments were carried out to obtain information about the underlying physical processes of the IR-RL emission.  相似文献   

3.
Yellow stimulated luminescence (Y-OSL) is the light detected from potassium-rich feldspars at 410 nm under stimulation by a yellow light source emitting 590 nm. The investigation of this study aimed at understanding basic luminescence physics of Y-OSL in order to assess the suitability of the technique for dating. The Y-OSL signal properties tested were signal intensity, thermal assistance, thermal stability, sensitivity to daylight and the suitability of a single aliquot regenerative (SAR) protocol to be employed for equivalent dose (De) estimation. De measurements were conducted on samples of Holocene, last glacial and Tertiary age. The tests were undertaken on sedimentary feldspar separates extracted from aeolian, fluvial and coastal deposits.Results from experiments show that the signal intensity increases by measuring Y-OSL at elevated temperature suggesting thermal assistance characteristics similar to infrared stimulated luminescence (IRSL). The yellow stimulated signal remains unaffected by preheat temperatures up to ~200 °C suggesting higher thermal stability than the IRSL signal. The Y-OSL signal is less light sensitive than the IRSL signal and De residuals obtained from modern samples are up to 7 Gy indicating suitability of the technique for ‘older’ and well-bleached sediments. The dose recovery tests successfully recovered the given dose if the specific light sensitivity of Y-OSL is taken into account. For every sample Y-OSL De values obtained by a single aliquot regenerative dose protocol (SAR) are higher than those obtained by an IRSL SAR approach. From these results we infer high thermal stability and a minimal anomalous fading of the Y-OSL signal. We conclude that Y-OSL has a high potential to date Quaternary sediments that were sufficiently bleached in nature.  相似文献   

4.
Optical dating of quartz by optically stimulated luminescence has a time range that is generally less than about 500 ka, due to relatively rapid saturation of the available luminescence defects in quartz. We test here a new method, electron spin resonance (ESR) optical dating of quartz, in which radiation-sensitive defects at aluminum and titanium atoms on silicon sites give rise to signals which can only be detected near liquid nitrogen temperature and which have a much higher capacity to absorb radiation dose before saturating than optical luminescence-detected signals. Our results show this method yields agreement with independent age control out to about 2.5 million years, extending here the dating range of optically exposed quartz in sediments in along-shore sediments (aeolian and waterlain) by a factor of about 5. Three sites in along-shore lacustrine and marine aeolian environments yielded very good agreement with independent age control. Details of single saturating exponential fitting in relation to agreement with expected burial doses and annealing of Al and Ti signals provide additional data to consider the best approaches to the dating method. Furthermore, we propose a new criterion for ESR optical dating: both the Al signal and Ti signal ages must agree to insure accurate burial ages. Moreover, when Al signal ages are lower than Ti signal ages, then the Al signal may be taken as the minimum burial age.  相似文献   

5.
The radioluminescence (RL) of carbon doped aluminium oxide (Al2O3:C) TL dosimeter material (TLD-500) was investigated using a 137Cs conversion electron source (which also emits β and γ) for simultaneous irradiation and luminescence excitation. Furthermore, RL dosimetry characteristics of this material were studied. The main RL emission occurs at 420 nm. That matches the known main TL and OSL emissions for this material as well as an emission that was investigated in earlier RL studies, excited at higher energies (4 MeV electrons) and very high pulse delivered doses (≈800 kGy·s−1). Furthermore, the saturation dose for the main peak is reached at the dose level of ≈80 Gy as known from TL and earlier RL investigations. Other peaks at 700 and 790 nm and broad emission bands at photon energies higher than 3.00 eV and others between 2.00 and 2.50 eV were observed. The 700 nm emission shows growth also at higher dose levels, and saturates at an estimated dose of ≈800 Gy. The 790 nm emission reaches its maximum intensity at ≈10 Gy absorbed dose. The reported results give an outlook to the usability and the potential of Al2O3:C combined with RL measurements for radiation dosimetry as well as for beta source calibration, using radioluminescence.  相似文献   

6.
We present a study of the sensitivity to light (ease-of-bleaching) of the trapped charge in sedimentary quartz grains using an optically stimulated luminescence (OSL) technique in which the intensity of the stimulation light is linearly increased during the measurement period. The technique is known as linear modulation OSL (LM-OSL). In controlled laboratory conditions, this technique has been employed to study the ease-of-bleaching of the trapped charge in quartz by comparing the OSL curves of quartz aliquots which have been either: (1) fully bleached, followed by a laboratory dose of β-irradiation, or (2) partially bleached, followed by the laboratory β-dose. The ratio of the OSL signals due to the β-dose from the partly and fully bleached aliquots is illustrated to be a potential indicator of the degree of optical resetting of the OSL signal in dating material. The key parameter governing the ease-of-bleaching is the photoionization cross-section of the trap involved. The concept is also demonstrated in a model study from which very good agreement with the experimental observations has been found. Potential applications of the technique to dating are discussed.  相似文献   

7.
Radioluminescence (RL) and optically stimulated luminescence (OSL) results of LiAlO2 were compared with Al2O3:C. For blue (470 nm) optical stimulation, RL + OSL signal in LiAlO2 exhibited a sharp initial increase followed by a decay within the first 20 s of continuous wave (CW)-OSL and a very slow increase thereafter. The RL + OSL signal was about 1.25 times of its RL signal in LiAlO2 as compared to 2.5 times in Al2O3:C. With the continued beta irradiation, the RL signal exhibited a faster growth in LiAlO2 than that in Al2O3:C. Emission spectrum of LiAlO2 exhibited multiple emission peaks in the range from 320 to 380 nm as against 410 nm of Al2O3:C. RL and OSL emission spectra were similar in both LiAlO2 and Al2O3:C. The intense RL in LiAlO2 (about 300 times of that of its background signal) for a beta ray dose rate of 4.6 mGy/s appears attractive for radiation dosimetry including real time/online dosimetry and dose mapping.  相似文献   

8.
The conclusions of Rhodes and Pownall (Rhodes, E.J., Pownall, L., 1994. Zeroing of the OSL signal in quartz from young glaciofluvial sediments. Radiation Measurements 23, 329–333) were somewhat discouraging for the prospects of using quartz OSL for dating glacigenic sediments, while the more detailed study of Rhodes and Bailey (Rhodes, E.J., Bailey, R.M., 1997. The effect of thermal transfer on the zeroing of the luminescence of quartz from recent glaciofluvial sediments. Quaternary Science Reviews (Quaternary Geochronology) 16, 291–298) provided more encouragement. Specifically, the latter authors were able to account for the relatively high De values observed for recent glacigenic (dominantly glaciofluvial) sediments in terms of an anomalously high thermal transfer effect, rather than simply insufficient bleaching prior to deposition. In other locations, the OSL of quartz from glacigenic material appears to provide reliable age estimates, and does not suffer from these effects (Owen, L.A., Richards, B., Rhodes, E.J., Cunningham, W.D., Windley, B.F., Badamgarav, J., Dorjnamjaa, D., 1998. Relic permofrost structures in the Gobi of Mongolia: age and significance. Journal of Quaternary Science 13 (16), 539–548; Richards, B.W., Owen, L.A., Rhodes, E.J., 2000. Timing of Late Quaternary glaciations in the Himalayas of northern Pakistan. Journal of Quaternary Science 15, 283–297). In this paper, laboratory bleached samples from both the above studies are remeasured, using an experimental design to correct for OSL sensitivity changes, which has some similarities to the single aliquot regenerative dose (SAR) protocol of Murray and Wintle (Murray A.S., Wintle A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 57–73). Clear evidence of thermal transfer OSL signals, generated during the preheating procedure, is presented. Further measurements, using the full SAR protocol, demonstrate that the source of this charge is related to natural dosing. For one sample, the apparent effect is subtracted effectively by the SAR protocol. Another sample studied in detail shows a striking relationship between the thermally transferred OSL signal and the total TL observed during the ramping of the preceding preheat treatment.  相似文献   

9.
The luminescence properties of NaCl are discussed. Attention is focussed predominantly upon the optically stimulated luminescence (OSL) signal (UV emission) of NaCl (420–560 nm stimulation). The results from experiments relevant to geological dating applications, such as signal resetting, dose response and thermal stability, are described. The behaviour of the OSL signal observed was found to be favourable for dating, with both the thermal stability and dose response suggesting a range of at least 10 ka. Signal resetting via optical exposure was found to be extremely rapid and no evidence of either thermoluminescence or OSL signals was found following re-crystallization. The potential for dating natural salt deposits, as found in various arid environments, appears to be good.  相似文献   

10.
In this paper we use a recently developed radioluminescence (RL) attachment to the Risø TL/OSL reader to test the InfraRed-RadioFluorescence (IR-RF) dating method applied to K-feldspar rich extracts from our known-age archive samples. We present experiments to characterise the instrument performance and to test the reproducibility of IR-RF measurements. These experiments illustrate the high sensitivity and dose rate of our RL system, the negligible influence of the turntable movement on IR-RF signals and the effectiveness of the built in 395 nm LED at bleaching IR-RF signals. We measure IR-RF ages on a set of samples with independent age control using a robust analytical method, which is able to detect any possible sensitivity change. Our IR-RF ages do not agree well with the independent age control; the ages of the younger samples (20–45 ka) are significantly over-estimated while the ages of the older samples (~130 ka) are significantly under-estimated. Experiments are undertaken to investigate this disagreement and our results indicate that they can most likely be explained by 1) the difficulty of defining the correct bleaching level prior to regeneration measurements, 2) signal instability, 3) sensitivity changes between the additive dose and regenerative dose measurements, or a combination of these three factors.  相似文献   

11.
The spectral distribution of radioluminescence (RL) and its dose dependence was investigated on various substances to get information about the applicability in dosimetry and dating. The list comprises archaeometallurgical slag components (quartz relicts, glassy fraction), bone, cooking salt, corals, egg shell, flint, mussel shell, natural gypsum, natural halite, quartz (sediments, vein quartz) and sugar. The different emission wave-bands and basic features of their RL-dose-characteristics are reported for 18 different samples. Furthermore results of some materials are discussed in more detail.  相似文献   

12.
Color-enhancement investigations without using heating treatment from dull or pale to ideal saturation and/or changes to the formation of the rarer attractive colors are widely conducted to revalue abandoned gem material sources in the world. Such an investigation is carried out on pale or dull purple-colored amethyst and smoky-colored morion samples, which are two important gem species of the crystalline quartz (SiO2) mineral that are currently abandoned in natural deposits in Turkey because of their unattractive coloration. The results of color enhancements observed on these samples, after irradiation with artificial gamma, neutron and beta beams, were examined by comparing with samples with the ideal color saturation and also with colorless samples, using optical absorption (OA) and radioluminescence (RL) spectroscopy. The ICP-AES analyses reveal that the main impurity elements of over 100 ppm in abundance in these quartz species are aluminum, iron and titanium for amethyst, and aluminum, iron, titanium and manganese for morion. The OA spectra indicate that vivid purple coloration of amethyst is due to the transmittance at about 395–420 nm band gap as a result of absorbance peaks at 375, 480 and 530 nm. These absorbances may be related to the unusual oxidized small proportions of certain impurity ions, after being exposed mainly to gamma irradiation, such as Al(IV) from the total aluminum, Ti(V) from the total titanium and Fe(IV) from the total iron, respectively. However, the RL spectroscopy of amethyst samples before and after they were exposed to artificial gamma, neutron and beta radiation beams demonstrates that the ions most affected by irradiation are Fe(IV) first and Al(IV) and Ti(V) second, and these ions represent the RL peaks at 600, 720 and 495 nm, respectively. The OA spectra indicate that dark smoky coloration in morion is due to a lack of transmittance at the visible region as a result of the absorbance peaks at 375, 450–490, 620 and 730 nm. These absorbances also may be related to the unusual oxidized small proportions of certain impurity ions by irradiation, such as Al(IV) from the total aluminum, Ti(V) from the total titanium and Mn(III) from the total manganese, respectively. In addition, the buoyancies of these absorbance peaks in the visible region produce the color hues between light smoky and dark smoky colorations in morion samples. These oxidized ion states are more resistant and stable against environmental destructive conditions in comparison with amethyst. Thus, the dark smoky coloration of morion becomes dull or pale after relatively longer periods. But, the RL spectroscopy of morion before and after being exposed to gamma, neutron and beta irradiation beams demonstrates that the most induced ions from the irradiation are Mn(III) and Al(IV) first and Ti(V) second. These ions represent the RL peaks at about 400, 720 and about 500 nm, respectively.  相似文献   

13.
The IR signal of the radioluminescence of potassium feldspars is caused by the luminescent transition of electrons into optically active traps. This allows the direct determination of the density of trapped electrons and therefore a method of sediment dating with higher precision and accuracy than conventional luminescence dating. The principle behind it and its advantages are presented, in particular the fact that it is a real single aliquot dating technique. The explanation of both radioluminescence and IR-optically stimulated luminescence (IR-OSL) in terms of a band model is possible after the introduction of a localized transition. In contrast to previous models, the process of dose accumulation in the sediment was simulated using a dose rate as low as in real sediments. Preheat experiments indicate that the recombination centres are the unstable part of the luminescence process. The parameters of these centres are equal to those previously assigned to thermally unstable electron traps. Furthermore, the sources of systematic errors in conventional IR-OSL dating are discussed.  相似文献   

14.
Optically stimulated luminescence (OSL) signals from feldspar and quartz samples were studied using infrared (860 nm) and green light (420–575 nm) stimulation. A serious problem connected with the regeneration technique used for dating is associated with a change of OSL sensitivity to radiation in the course of the measurement process. A typical effect seen is a large increase of the apparent strength of our beta source when calibrated against a gamma source. If the regeneration procedure is used, it is shown that the sensitivity increases up to 50% during the measurement process and as a result, the equivalent dose (ED) would be underestimated. A study of sensitivity changes in feldspars and quartz was carried out with emphasis on the effect of preheat and annealing on the OSL signal. Measurement results obtained are presented, and possible elimination of errors in dating caused by sensitivity changes is discussed.  相似文献   

15.
This paper gives a review of recent developments in luminescence measurement facilities on the Risø TL/OSL reader including radio-luminescence (RL), exo-electron and violet stimulation attachments, and a method for characterising and if necessary correcting for beta irradiation source non-uniformity.We first describe improvements to the existing RL option to allow near infra-red detection (NIR) during irradiation by the built-in 90Sr/90Y beta source. The RL optical signal is collected by a liquid light guide through an F34-901 interference filter and detection is based on a dedicated thermoelectrically cooled NIR sensitive PMT (detection window peak at 855 nm, FWHM 27 nm). Software and electronics have been modified to allow standard TL and OSL measurements in the same sequence as RL measurements. Together with a new bleaching source based on a high-power UV LED (395 nm; 700 mW/cm2), this facility has been used to measure natural doses in feldspar using the decaying NIR RL signal.Secondly, we present a method for mapping radiation field of the built-in 90Sr/90Y β-source and estimating grain-location specific dose-rates. This is important for the accuracy of single grain results, when radiation field is spatially non-uniform across the sample area. We document the effect of this correction method and further investigate on the effect of lifting the source to achieve a better dose-rate uniformity.Finally we summarise two recently-developed novel facilities to help investigate (i) the time scales involved in OSL processes (time-resolved exo-electron detection) and (ii) extending the age range (violet stimulated signals from deep quartz OSL traps).  相似文献   

16.
Post-IR IRSL (pIRIR) signals from K-feldspar grains measured at elevated temperatures are increasingly being used for dating sediments. Unfortunately the pIRIR signal from K-feldspars bleaches more slowly than other signals (e.g. OSL from quartz) upon exposure to daylight, leading to concerns about residual signals remaining at deposition. However, earlier studies have not assessed whether the pIRIR signal bleaches at the same rate in all feldspar grains. In this study laboratory bleaching experiments have been conducted and for the first time the results show that the rate at which the pIRIR signal from individual K-feldspar grains bleach varies. To determine whether grain-to-grain variability in bleaching rate has a dominant control on equivalent dose (De) distributions determined using single grains, analysis was undertaken on three samples with independent age control from different depositional environments (two aeolian and one glaciofluvial). The De value determined from each grain was compared with the rate at which the pIRIR225 signal from the grain bleaches. The bleaching rate of each grain was assessed by giving a 52 Gy dose and measuring the residual De after bleaching for an hour in a solar simulator. There is no clear relationship between the rate at which the pIRIR225 signal of an individual grain bleaches and the magnitude of its De. It is concluded that variability in the bleaching rate of the pIRIR225 signal from one grain to another does not appear to be a dominant control on single grain De distributions.  相似文献   

17.
The UV-blue thermoluminescence (TL) emission of exsolved and twinned potassium feldspars is potentially valid to be employed in the field of dating and retrospective dosimetry. This paper reports about the following results: (i) The dose dependence of the 400 nm TL intensity of a K-rich feldspar exhibits an excellent linearity in the range of 50 mGy–8 Gy. (ii) The stability of the TL signal after 6 months of storage, shows an initial rapid decay (ca. 45%) maintaining the stability from 40 days onwards which indicates that the electron population decreases asymptotically by the X-axis and the involved electrons are located in deeper traps at room temperature. The fading process can be fitted to a first-order decay equation of the sort y=y0+A exp(−x/t). (iii) The tests of thermal stability at different temperatures confirm a continuous trap distribution with progressive changes in the glow curve shape, intensity and temperature position of the maximum peak. According to this behaviour some physical parameters are defined.  相似文献   

18.
After bleaching the optically stimulated luminescence (OSL) signal to a low residual level, the signal has been found to increase during subsequent storage or preheating. This effect is well known in quartz as “recuperation of OSL after bleaching” (Aitken, M.J., Smith, B.W., 1988. Optical dating: recuperation after bleaching. Quat. Sci. Rev. 7. 387–393.). A better understanding of recuperation in feldspars could help the dating specialist, because this process might be different from the recuperation observed in quartz. This paper highlights a few examples of a larger study, which cannot be shown here in complete detail. We carried out a recuperation study of infrared-stimulated luminescence (IRSL) of different feldspars from a mineral collection, mainly alkali feldspars and one albite. The samples were irradiated with doses of 200, 1000 and 2500 Gy in a 60Co gamma cell. Subsequently, the samples were stored in the dark at room temperature (3 weeks up to 6 months, depending on the applied dose), so that the very intense irradiation-induced phosphorescence can decrease for many orders of magnitude. The emitted OSL was measured through detection filters also used in dating (Schott UG 11, Hoya U 340 for detection of near UV-emissions and Schott BG 39 for detection in the visible range). Recuperation times up to 100 days were used. The recuperated-OSL emissions were measured either with the optical filters mentioned above or with a modified experimental set-up using a variable interference filter with a continuous detection range from 400 to 700 nm. In some feldspars very intense recuperation signals (up to 100% and more of the initial signal) were observed when optical stimulation was performed with IR and broadband detection using the BG 39 or when detection was carried out in the near ultraviolet region. The IRSL emissions at 410 and 560 nm, measured with the interference filter, showed no recuperation despite a clearly detectable first shine-down.  相似文献   

19.
The 25–280 K radioluminescence (RL) and thermoluminescence (TL) spectra in a nominally pure CsI have been studied. Strong emissions at 250–400 nm consist of two bands at 305 and 340 nm associated with the VK+e and H+F-type self-trapped excitons (STEs), respectively. There are some weak extrinsic signals in RL. The temperature dependence and the response of the two main bands to the X-ray tube voltage have been studied. It has been found that the dominant TL signals are associated with contamination of the sample, though the trapping levels are still characterised by the host lattice. A temperature shift between the intrinsic and extrinsic TL peaks has been observed in the thermal emissions at 55 and 82 K.  相似文献   

20.
Dating quaternary sediments by thermoluminescence (TL) or optically stimulated luminescence (OSL) calls for a detailed knowledge of the luminescence of feldspars. TL of the various alkali feldspars ((K, Na) Si3AlO8) display many common features, and some of these cause great difficulties for dating. After long storage following ionizing irradiation, the TL of most alkali feldspars is known to fade away by “anomalous fading”, which is incompatible with dating. This effect had been attributed to tunnel recombination. Following irradiation, a very intense tunnelling afterglow is observed at temperatures down to liquid nitrogen, in accordance with the observed rate of fading. This emission has a Gaussian spectrum entirely in the infrared (IR) with a maximum at 1.7 eV. It displays an important thermal quenching from 77 to 300 K. Its intensity is related with the ‘disorder’ of the crystal lattice. At higher temperatures, in TL proper, two emission bands can be separated. One is the well-studied complex visible emission, distributed over the spectral region from UV to orange, but mostly ‘blue’. The other is the ‘infrared’ band already observed at lower temperatures, which is attributed to Fe3+ ions. These two bands are clearly separated, with the spectral maxima, respectively, below and above 600 nm. They have also different kinetics, the glow peaks temperatures are different. But these two different bands are also coupled in many ways, they have parallel growth and fading. With ‘disordered’ feldspars, the ‘blue’ emission displays anomalous fading, which is stronger than that of the ‘infrared’. The infrared emission is more stable, which may be interesting for the purpose of dating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号