首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a previous paper of Miele et al. (J. Optim. Theory Appl. 132(1), 2007), we employed the single-subarc sequential gradient-restoration algorithm to optimize the three-dimensional rendezvous between a target spacecraft in a planar circular orbit and a chaser spacecraft with an initial separation distance and separation velocity. The achieved continuous solutions are characterized by two, three, or four subarcs depending on the performance index (time, fuel) and the constraints. In this paper, based on the solutions in Miele et al. (J. Optim. Theory Appl. 132(1), 2007), we employ the multiple-subarc sequential gradient-restoration algorithm to produce pieced guidance trajectories implementable in real time via constant control components. In other words, in this investigation, we force the controls to behave as parameters in each subarc. With the above understanding, we investigate four problems: (P1) minimum time, fuel free; (P2) minimum fuel, time free; (P3) minimum time, fuel given; (P4) minimum fuel, time given. Problem P1 results in a two-subarc solution, each subarc with constant controls: a max-thrust accelerating subarc followed by a max-thrust braking subarc. Problem P2 results in a four-subarc solution, each subarc with constant controls: an initial coasting subarc, followed by a max-thrust braking subarc, followed by another coasting subarc, followed by another max-thrust braking subarc. Problems P3 and P4 result in two, three, or four-subarc solutions depending on the performance index and the constraints, albeit with constant controls in each subarc. For each of the problems studied, the performance index of the multiple-subarc pieced guidance trajectory approximates well the performance index of the single-subarc continuous optimal trajectory of Miele et al. (J. Optim. Theory Appl. 132(1), 2007) as well as the performance index of the multiple-subarc pieced optimal trajectory: the pairwise relative differences in performance index are less than 1/100. This research was supported by NSF under Grant CMS-0218878.  相似文献   

2.
We consider the three-dimensional rendezvous between two spacecraft: a target spacecraft on a circular orbit around the Earth and a chaser spacecraft initially on some elliptical orbit yet to be determined. The chaser spacecraft has variable mass, limited thrust, and its trajectory is governed by three controls, one determining the thrust magnitude and two determining the thrust direction. We seek the time history of the controls in such a way that the propellant mass required to execute the rendezvous maneuver is minimized. Two cases are considered: (i) time-to-rendezvous free and (ii) time-to-rendezvous given, respectively equivalent to (i) free angular travel and (ii) fixed angular travel for the target spacecraft. The above problem has been studied by several authors under the assumption that the initial separation coordinates and the initial separation velocities are given, hence known initial conditions for the chaser spacecraft. In this paper, it is assumed that both the initial separation coordinates and initial separation velocities are free except for the requirement that the initial chaser-to-target distance is given so as to prevent the occurrence of trivial solutions. Analyses performed with the multiple-subarc sequential gradient-restoration algorithm for optimal control problems show that the fuel-optimal trajectory is zero-bang, namely it is characterized by two subarcs: a long coasting zero-thrust subarc followed by a short powered max-thrust braking subarc. While the thrust direction of the powered subarc is continuously variable for the optimal trajectory, its replacement with a constant (yet optimized) thrust direction produces a very efficient guidance trajectory: Indeed, for all values of the initial distance, the fuel required by the guidance trajectory is within less than one percent of the fuel required by the optimal trajectory. For the guidance trajectory, because of the replacement of the variable thrust direction of the powered subarc with a constant thrust direction, the optimal control problem degenerates into a mathematical programming problem with a relatively small number of degrees of freedom, more precisely: three for case (i) time-to-rendezvous free and two for case (ii) time-to-rendezvous given. In particular, we consider the rendezvous between the Space Shuttle (chaser) and the International Space Station (target). Once a given initial distance SS-to-ISS is preselected, the present work supplies not only the best initial conditions for the rendezvous trajectory, but simultaneously the corresponding final conditions for the ascent trajectory.  相似文献   

3.
In a companion paper (Part 1, J. Optim. Theory Appl. 137(3), [2008]), we determined the optimal starting conditions for the rendezvous maneuver using an optimal control approach. In this paper, we study the same problem with a mathematical programming approach. Specifically, we consider the relative motion between a target spacecraft in a circular orbit and a chaser spacecraft moving in its proximity as described by the Clohessy-Wiltshire equations. We consider the class of multiple-subarc trajectories characterized by constant thrust controls in each subarc. Under these conditions, the Clohessy-Wiltshire equations can be integrated in closed form and in turn this leads to optimization processes of the mathematical programming type. Within the above framework, we study the rendezvous problem under the assumption that the initial separation coordinates and initial separation velocities are free except for the requirement that the initial chaser-to-target distance is given. In particular, we consider the rendezvous between the Space Shuttle (chaser) and the International Space Station (target). Once a given initial distance SS-to-ISS is preselected, the present work supplies not only the best initial conditions for the rendezvous trajectory, but simultaneously the corresponding final conditions for the ascent trajectory.  相似文献   

4.
Optimal Trajectories and Guidance Schemes for Ship Collision Avoidance   总被引:1,自引:0,他引:1  
The best strategy for collision avoidance under emergency conditions is to maximize wrt the controls the timewise minimum distance between the host ship and the intruder ship. In a restricted waterway area, two main constraints must be satisfied: the lateral deviation of the host ship from the original course is to be contained within certain limits; the longitudinal distance covered by the host ship is to be subject to a prescribed bound. At the maximin point of the encounter, the time derivative of the relative distance vanishes; this yields an inner boundary condition (orthogonality between the relative position vector and the relative velocity vector) separating the main phases of the maneuver: the avoidance and recovery phases. In this way, the optimal trajectory problem (a Chebyshev problem) can be converted into a Bolza problem with an inner boundary condition. Numerical solutions are obtained via the multiple-subarc sequential gradient-restoration algorithm (SGRA). Because the optimal trajectory is not suitable for real-time implementation, a guidance scheme approximating the optimal trajectory in real time is to be developed. For ship collision avoidance, the optimal trajectory results show that the rudder angle time history has a bang-bang form characterized by the alternation of saturated control subarcs of opposite signs joined by rapid transitions. Just as the optimal trajectory can be partitioned into three phases (avoidance phase, recovery phase, steady phase), a guidance trajectory can be constructed in the same way. For the avoidance and recovery phases, use of decomposition techniques leads to an algorithm computing the time lengths of these phases in real time. For the steady phase, a feedback control scheme is used to maneuver the ship steadily. Numerical results are presented. Portions of this paper were presented by the senior author at the 13th International Workshop on Dynamics and Control, Wiesensteig, Germany, 22-26 May 2005, in honor of George Leitmann. This research was supported by NSF Grant CMS-02-18878.  相似文献   

5.
This paper considers both classical and minimax problems of optimal control which arise in the study of aeroassisted, coplanar orbital transfer. The maneuver considered involves the coplanar transfer from a high planetary orbit to a low planetary orbit. An example is the HEO-to-LEO transfer of a spacecraft, where HEO denotes high Earth orbit and LEO denotes low Earth orbit. In particular, HEO can be GEO, a geosynchronous Earth orbit.The basic idea is to employ the hybrid combination of propulsive maneuvers in space and aerodynamic maneuvers in the sensible atmosphere. Hence, this type of flight is also called synergetic space flight. With reference to the atmospheric part of the maneuver, trajectory control is achieved by means of lift modulation. The presence of upper and lower bounds on the lift coefficient is considered.Within the framework of classical optimal control, the following problems are studied: (P1) minimize the energy required for orbital transfer; (P2) minimize the time integral of the heating rate; (P3) minimize the time of flight during the atmospheric portion of the trajectory; (P4) maximize the time of flight during the atmospheric portion of the trajectory; (P5) minimize the time integral of the square of the path inclination; and (P6) minimize the sum of the squares of the entry and exit path inclinations. Problems (P1) through (P6) are Bolza problems of optimal control.Within the framework of minimax optimal control, the following problems are studied: (Q1) minimize the peak heating rate; (Q2) minimize the peak dynamic pressure; and (Q3) minimize the peak altitude drop. Problems (Q1) through (Q3) are Chebyshev problems of optimal control, which can be converted into Bolza problems by suitable transformations.Numerical solutions for Problems (P1)–(P6) and Problems (Q1)–(Q3) are obtained by means of the sequential gradient-restoration algorithm for optimal control problems. The engineering implications of these solutions are discussed. In particular, the merits of nearly-grazing trajectories are considered.This research was supported by the Jet Propulsion Laboratory, Contract No. 956415. The authors are indebted to Dr. K. D. Mease, Jet Propulsion Laboratory, for helpful discussions. This paper is a condensation of the investigation reported in Ref. 1.  相似文献   

6.
In this paper we investigate Lipschitz continuity of optimal solutions for the Bolza optimal control problem under Tonelli’s type growth condition. Such regularity being a consequence of normal necessary conditions for optimality, we propose new sufficient conditions for normality of state-constrained nonsmooth maximum principles for absolutely continuous optimal trajectories. Furthermore we show that for unconstrained problems any minimizing sequence of controls can be slightly modified to get a new minimizing sequence with nice boundedness properties. Finally, we provide a sufficient condition for Lipschitzianity of optimal trajectories for Bolza optimal control problems with end point constraints and extend a result from (J. Math. Anal. Appl. 143, 301–316, 1989) on Lipschitzianity of minimizers for a classical problem of the calculus of variations with discontinuous Lagrangian to the nonautonomous case.  相似文献   

7.
This paper is concerned with optimal flight trajectories in the presence of windshear. With particular reference to take-off, eight fundamental optimization problems [Problems (P1)–(P8)] are formulated under the assumptions that the power setting is held at the maximum value and that the airplane is controlled through the angle of attack.Problems (P1)–(P3) are least-square problems of the Bolza type. Problems (P4)–(P8) are minimax problems of the Chebyshev type, which can be converted into Bolza problems through suitable transformations. These problems are solved employing the dual sequential gradient-restoration algorithm (DSGRA) for optimal control problems.Numerical results are obtained for a large number of combinations of performance indexes, boundary conditions, windshear models, and windshear intensities. However, for the sake of brevity, the presentation of this paper is restricted to Problem (P6), minimax h, and Problem (P7), minimax . Inequality constraints are imposed on the angle of attack and the time derivative of the angle of attack.The following conclusions are reached: (i) optimal trajectories are considerably superior to constant-angle-of-attack trajectories; (ii) optimal trajectories achieve minimum velocity at about the time when the windshear ends; (iii) optimal trajectories can be found which transfer an aircraft from a quasi-steady condition to a quasi-steady condition through a windshear; (iv) as the boundary conditions are relaxed, a higher final altitude can be achieved, albeit at the expense of a considerable velocity loss; (v) among the optimal trajectories investigated, those solving Problem (P7) are to be preferred, because the altitude distribution exhibits a monotonic behavior; in addition, for boundary conditions BC2 and BC3, the peak angle of attack is below the maximum permissible value; (vi) moderate windshears and relatively severe windshears are survivable employing an optimized flight strategy; however, extremely severe windshears are not survivable, even employing an optimized flight strategy; and (vii) the sequential gradient-restoration algorithm (SGRA), employed in its dual form (DSGRA), has proven to be a powerful algorithm for solving the problem of the optimal flight trajectories in a windshear.Portions of this paper were presented at the AIAA Atmospheric Flight Mechanics Conference, Snowmass, Colorado, August 19–21, 1985. The authors are indebted to Boeing Commercial Aircraft Company, Seattle, Washington and to Pratt and Whitney Aircraft, East Hartford, Connecticut for supplying some of the technical data pertaining to this study.This research was supported by NASA-Langley Research Center, Grant No. NAG-1-516. The authors are indebted to Dr. R. L. Bowles, NASA-Langley Research Center, Hampton, Virginia, for helpful discussions.This paper is based in part on Refs. 1–5.  相似文献   

8.
In this paper, a variational problem is considered with differential equality constraints over a variable interval. It is stressed that the abnormality is a local character of the admissible set; consequently, a definition of regularity related to the constraints characterizing the admissible set is given. Then, for the local minimum necessary conditions, a compact form equivalent to the well-known Euler equation and transversality condition is given. By exploiting this result and the previous definition of regularity, it is proved that nonregularity is a necessary and sufficient condition for an admissible solution to be an abnormal extremal. Then, a necessary and sufficient condition is given for an abnormal extremal to be weakly abnormal. The analysis of the abnormality is completed by considering the particular case of affine constraints over a fixed interval: in this case, the abnormality turns out to have a global character, so that it is possible to define an abnormal problem or a normal problem. The last section is devoted to the study of an optimal control problem characterized by differential constraints corresponding to the dynamics of a controlled process. The above general results are particularized to this problem, yielding a necessary and sufficient condition for an admissible solution to be an abnormal extremal. From this, a previously known result is recovered concerning the linearized system controllability as a sufficient condition to exclude the abnormality.  相似文献   

9.
This paper is concerned with optimal flight trajectories in the presence of windshear. The abort landing problem is considered with reference to flight in a vertical plane. It is assumed that, upon sensing that the airplane is in a windshear, the pilot increases the power setting at a constant time rate until maximum power setting is reached; afterward, the power setting is held constant. Hence, the only control is the angle of attack. Inequality constraints are imposed on both the angle of attack and its time derivative.The performance index being minimized is the peak value of the altitude drop. The resulting optimization problem is a minimax problem or Chebyshev problem of optimal control, which can be converted into a Bolza problem through suitable transformations. The Bolza problem is then solved employing the dual sequential gradient-restoration algorithm (DSGRA) for optimal control problems. Numerical results are obtained for several combinations of windshear intensities, initial altitudes, and power setting rates.For strong-to-severe windshears, the following conclusions are reached: (i) the optimal trajectory includes three branches: a descending flight branch, followed by a nearly horizontal flight branch, followed by an ascending flight branch after the aircraft has passed through the shear region; (ii) along an optimal trajectory, the point of minimum velocity is reached at about the time when the shear ends; (iii) the peak altitude drop depends on the windshear intensity, the initial altitude, and the power setting rate; it increases as the windshear intensity increases and the initial altitude increases; and it decreases as the power setting rate increases; (iv) the peak altitude drop of the optimal abort landing trajectory is less than the peak altitude drop of comparison trajectories, for example, the constant pitch guidance trajectory and the maximum angle of attack guidance trajectory; (v) the survival capability of the optimal abort landing trajectory in a severe windshear is superior to that of comparison trajectories, for example, the constant pitch guidance trajectory and the maximum angle of attack guidance trajectory.Portions of this paper were presented at the IFAC 10th World Congress, Munich, Germany, July 27–31, 1987 (Paper No. IFAC-87-9221).This research was supported by NASA Langley Research Center, Grant No. NAG-1-516, by Boeing Commercial Airplane Company (BCAC), and by Air Line Pilots Association (ALPA). Discussions with Dr. R. L. Bowles (NASA-LRC) and Mr. C. R. Higgins (BCAC) are acknowledged.  相似文献   

10.
This paper is concerned with optimal flight trajectories in the presence of windshear. The penetration landing problem is considered with reference to flight in a vertical plane, governed by either one control (the angle of attack, if the power setting is predetermined) or two controls (the angle of attack and the power setting). Inequality constraints are imposed on the angle of attack, the power setting, and their time derivatives.The performance index being minimized measures the deviation of the flight trajectory from a nominal trajectory. In turn, the nominal trajectory includes two parts: the approach part, in which the slope is constant; and the flare part, in which the slope is a linear function of the horizontal distance. In the optimization process, the time is free; the absolute path inclination at touchdown is specified; the touchdown velocity is subject to upper and lower bounds; and the touchdown distance is subject to upper and lower bounds.Three power setting schemes are investigated: (S1) maximum power setting; (S2) constant power setting; and (S3) control power setting. In Scheme (S1), it is assumed that, immediately after the windshear onset, the power setting is increased at a constant time rate until maximum power setting is reached; afterward, the power setting is held constant; in this scheme, the only control is the angle of attack. In Scheme (S2), it is assumed that the power setting is held at a constant value, equal to the prewindshear value; in this scheme, the only control is the angle of attack. In Scheme (S3), the power setting is regarded as a control, just as the angle of attack.Under the above conditions, the optimal control problem is solved by means of the primal sequential gradient-restoration algorithm (PSGRA). Numerical results are obtained for several combinations of windshear intensities and initial altitudes. The main conclusions are given below with reference to strong-to-severe windshears.In Scheme (S1), the touchdown requirements can be satisfied for relatively low initial altitudes, while they cannot be satisfied for relatively high initial altitudes; the major inconvenient is excess of velocity at touchdown. In Scheme (S2), the touchdown requirements cannot be satisfied, regardless of the initial altitude; the major inconvenient is defect of horizontal distance at touchdown.In Scheme (S3), the touchdown requirements can be satisfied, and the optimal trajectories exhibit the following characteristics: (i) the angle of attack has an initial decrease, which is followed by a gradual, sustained increase; the largest value of the angle of attack is attained near the end of the shear; in the aftershear region, the angle of attack decreases gradually; (ii) initially, the power setting increases rapidly until maximum power setting is reached; then, maximum power setting is maintained in the shear region; in the aftershear region, the power setting decreases gradually; (iii) the relative velocity decreases in the shear region and increases in the aftershear region; the point of minimum velocity occurs at the end of the shear; and (iv) depending on the windshear intensity and the initial altitude, the deviations of the flight trajectory from the nominal trajectory can be considerable in the shear region; however, these deviations become small in the aftershear region, and the optimal flight trajectory recovers the nominal trajectory.A comparison is shown between the optimal trajectories of Scheme (S3) and the trajectories arising from alternative guidance schemes, such as fixed controls (fixed angle of attack, coupled with fixed power setting) and autoland (angle of attack controlled via path inclination signals, coupled with power setting controlled via velocity signals). The superiority of the optimal trajectories of Scheme (S3) is shown in terms of the ability to meet the path inclination, velocity, and distance requirements at touchdown. Therefore, it is felt that guidance schemes based on the properties of the optimal trajectories of Scheme (S3) should prove to be superior to alternative guidance schemes, such as the fixed control guidance scheme and the autoland guidance scheme.Portions of this paper were presented at the AIAA 26th Aerospace Sciences Meeting, Reno, Nevada, January 11–14, 1988 (Paper No. AIAA-88-0580).This research was supported by NASA-Langley Research Center, Grant No. NAG-1-516, by Boeing Commercial Airplane Company (BCAC), and by Air Line Pilots Association (ALPA).The authors are indebted to Dr. R. L. Bowles, NASA-Langley Research Center, and to Dr. G. R. Hennig, Boeing Commercial Airplane Company, for helpful discussions.  相似文献   

11.
This paper deals with the optimal transfer of a spacecraft from a low Earth orbit (LEO) to a low Mars orbit (LMO). The transfer problem is formulated via a restricted four-body model in that the spacecraft is considered subject to the gravitational fields of Earth, Mars, and Sun along the entire trajectory. This is done to achieve increased accuracy with respect to the method of patched conics.The optimal transfer problem is solved via the sequential gradient-restoration algorithm employed in conjunction with a variable-stepsize integration technique to overcome numerical difficulties due to large changes in the gravitational field near Earth and near Mars. The optimization criterion is the total characteristic velocity, namely, the sum of the velocity impulses at LEO and LMO. The major parameters are four: velocity impulse at launch, spacecraft vs. Earth phase angle at launch, planetary Mars/Earth phase angle difference at launch, and transfer time. These parameters must be determined so that V is minimized subject to tangential departure from circular velocity at LEO and tangential arrival to circular velocity at LMO.For given LEO and LMO radii, a departure window can be generated by changing the planetary Mars/Earth phase angle difference at launch, hence changing the departure date, and then reoptimizing the transfer. This results in a one-parameter family of suboptimal transfers, characterized by large variations of the spacecraft vs. Earth phase angle at launch, but relatively small variations in transfer time and total characteristic velocity.For given LEO radius, an arrival window can be generated by changing the LMO radius and then recomputing the optimal transfer. This leads to a one-parameter family of optimal transfers, characterized by small variations of launch conditions, transfer time, and total characteristic velocity, a result which has important guidance implications. Among the members of the above one-parameter family, there is an optimum–optimorum trajectory with the smallest characteristic velocity. This occurs when the radius of the Mars orbit is such that the associated period is slightly less than one-half Mars day.  相似文献   

12.
The ideal strategy for ship collision avoidance under emergency conditions is to maximize wrt the controls the timewise minimum distance between a host ship and an intruder ship. This is a maximin problem or Chebyshev problem of optimal control in which the performance index being maximinimized is the distance between the two ships. Based on the multiple-subarc sequential gradient-restoration algorithm, a new method for solving the maximin problem is developed.Key to the new method is the observation that, at the maximin point, the time derivative of the performance index must vanish. With the zero derivative condition being treated as an inner boundary condition, the maximin problem can be converted into a Bolza problem in which the performance index, evaluated at the inner boundary, is being maximized wrt the controls. In turn, the Bolza problem with an added inner boundary condition can be solved via the multiple-subarc sequential gradient-restoration algorithm (SGRA).The new method is applied to two cases of the collision avoidance problem: collision avoidance between two ships moving along the same rectilinear course and collision avoidance between two ships moving along orthogonal courses. For both cases, we are basically in the presence of a two-subarc problem, the first subarc corresponding to the avoidance phase of the maneuver and the second subarc corresponding to the recovery phase. For stiff systems, the robustness of the multiple-subarc SGRA can be enhanced via increase in the number of subarcs. For the ship collision avoidance problem, a modest increase in the number of subarcs from two to three (one subarc in the avoidance phase, two subarcs in the recovery phase) helps containing error propagation and achieving better convergence results.  相似文献   

13.
In this paper, we consider a class of optimal control problems in which the cost functional is the sum of the terminal cost, the integral cost, and the full variation of control. The term involving the full variation of control is to measure the changes on the control action. A computational method based on the control parametrization technique is developed for solving this class of optimal control problems. This computational method is supported by a convergence analysis. For illustration, two numerical examples are solved using the proposed method.This project was partially supported by an Australian Research Grant.This paper is dedicated to Professor L. Cesari on the occasion of his 80th birthday.  相似文献   

14.
We consider a problem of derivatives design under asymmetry of information: the principal sells a contingent claim to an agent, the type of whom he does not know. More precisely, the principal designs a contingent claim and prices it for each possible agent type, in such a way that each agent picks the contingent claim and pays the price that the principal designed for him. We assume that the preferences of the agent depend linearly on the parameters which determine the agent’s type; this model is rich enough to accommodate quadratic utilities. The problem then is reformulated as an optimization problem, where the optimization is performed within a class of convex functions. We prove an existence result for the provide explicit examples in the case when the agent is fully characterized by a single parameter  相似文献   

15.
In this paper, we generalize a coordinate transformation method, due to Leitmann (Ref. 1), for free problems in the calculus of variations to analogous problems with multiple integrals.  相似文献   

16.
In this note, we contrast two transformation-based methods to deduce absolute extrema and the corresponding extremizers. Unlike variation-based methods, the transformation-based methods of Carlson and Leitmann and the recent one of Silva and Torres are direct in that they permit obtaining solutions by inspection.  相似文献   

17.
This paper is concerned with guidance strategies for near-optimum performance in a windshear. This is a wind characterized by sharp change in intensity and direction over a relatively small region of space. The take-off problem is considered with reference to flight in a vertical plane.First, trajectories for optimum performance in a windshear are determined for different windshear models and different windshear intensities. Use is made of the methods of optimal control theory in conjunction with the dual sequential gradient-restoration algorithm (DSGRA) for optimal control problems. In this approach, global information on the wind flow field is needed.Then, guidance strategies for near-optimum performance in a wind-shear are developed, starting from the optimal trajectories. Specifically, three guidance schemes are presented: (A) gamma guidance, based on the relative path inclination; (B) theta guidance, based on the pitch attitude angle; and (C) acceleration guidance, based on the relative acceleration. In this approach, local information on the wind flow field is needed.Next, several alternative schemes are investigated for the sake of completeness, more specifically: (D) constant alpha guidance; (E) constant velocity guidance; (F) constant theta guidance; (G) constant relative path inclination guidance; (H) constant absolute path inclination guidance; and (I) linear altitude distribution guidance.Numerical experiments show that guidance schemes (A)–(C) produce trajectories which are quite close to the optimum trajectories. In addition, the near-optimum trajectories associated with guidance schemes (A)–(C) are considerably superior to the trajectories arising from the alternative guidance schemes (D)–(I).An important characteristic of guidance schemes (A)–(C) is their simplicity. Indeed, these guidance schemes are implementable using available instrumentation and/or modification of available instrumentation.Portions of this were presented at the AIAA 24th Aerospace Sciences Meeting, Reno, Nevada, January 6–9, 1986. The authors are indebted to Boeing Commercial Aircraft Company, Seattle, Washington and to Pratt and Whittney Aircraft, East Hartford, Connecticut for supplying some of the technical data pertaining to this study.The authors are indebted to Dr. R. L. Bowles, NASA-Langley Research Center, Hampton, Virginia for helpful discussions. They are also indebted to Mr. Z. G. Zhao, Aero-Astronautics Group, Rice University, Houston, Texas for analytical and computational assistance.This research was supported by NASA-Langley Research Center, Grant No. NAG-1-516. This paper, a continuation of Ref.1, is based in part on Refs. 2–3.  相似文献   

18.
Based on an earlier publication (Ref. 1), a coordinate transformation is proposed, which allows the direct global extremization of a class of integrals without the use of comparison methods such as variational or field techniques. This direct method is shown to be applicable to a class of unconstrained optimal control problems. A motivation for the proposed method as well as applications are presented.  相似文献   

19.
We establish rigorously several pointwise or asymptotic firstorder necessary conditions for infinite-horizon variational problems in general form, in the framework of continuous time. We obtain several new results, and we extend to general differentiable Lagrangians some results known only in special cases. To realize this aim, we justify two different ways to associate a family of finite-horizon problems to an infinite-horizon problem.The authors thank an anonymous referee for providing important historical references  相似文献   

20.
The fundamental problem of the calculus of variations on time scales concerns the minimization of a delta-integral over all trajectories satisfying given boundary conditions. This includes the discrete-time, the quantum, and the continuous/classical calculus of variations as particular cases. In this note we follow Leitmann’s direct method to give explicit solutions for some concrete optimal control problems on an arbitrary time scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号