首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Luminescent pentanuclear tetra-decker Ln(III) complexes [Eu5L4(OH)2(NO3)4(H2O)2].NO3.3H2O , [Nd5L4(OH)2(NO3)5MeOH].3MeOH.2H2O and [Eu5L4(CF3SO3)4(MeO)2(H2O)4].CF3SO3.H2O are formed from Ln(NO3)3.6H2O (Ln = Eu (1), Nd (2)) and Eu(CF3SO3)3, respectively (H2L = N,N'-bis(5-bromo-3-methoxysalicylidene)phenylene-1,2-diamine).  相似文献   

2.
Compounds formed from the reaction of N,N,N',N'-tetramethylsuccinamide (TMSA) with trivalent lanthanide salts possessing the poorly coordinating counteranions triflate (CF3SO3-) and perchlorate (ClO4-) have been prepared and examined. Structural features of these Ln-TMSA compounds have been studied in the solid phase by thermogravimetric analysis, infrared spectroscopy, and, in selected cases, by single-crystal X-ray diffraction and in solution by infrared spectroscopy. Eight-coordinate compounds, [Ln(TMSA)4]3+, derived from coordination of four succinamide ligands to the metal ion could be formed with all lanthanides examined (Ln = La, Pr, Nd, Eu, Yb, Lu). Structural analyses by single-crystal X-ray diffraction were performed for the lanthanide triflate salts Ln(C8H16N2O2)4(CF3SO3)3: Ln = La, compound 1, monoclinic, P2(1)/n, a = 11.0952(2) A, b = 19.2672(2) A, c = 24.9759(3) A, beta = 90.637(1) degrees, Z = 4, Dcalcd = 1.586 g cm-3; Ln = Nd, compound 2, monoclinic, C2/c, a = 24.6586(10) A, b = 19.3078(7) A, c = 11.1429(4) A, beta = 90.450(1) degrees, Z = 4, Dcalcd = 1.603 g cm-3; Ln = Eu, compound 3, monoclinic, C2/c, a = 24.4934(2) A, b = 19.3702(1) A, c = 11.1542(1) A, beta = 90.229(1) degrees, Z = 4, Dcalcd = 1.617 g cm-3; Ln = Lu, compound 5, monoclinic, C2/c, a = 24.2435(4) A, b = 19.6141(2) A, c = 11.2635(1) A, beta = 90.049(1) degrees, Z = 4, Dcalcd = 1.626 g cm-3. X-ray analysis was also carried out for the perchlorate salt: Ln = Eu, compound 4, triclinic, P1, a = 10.9611(2) A, b = 14.6144(3) A, c = 15.7992(2) A, alpha = 106.594(1) degrees, beta = 91.538(1) degrees, gamma = 90.311(1) degrees, Z = 2, Dcalcd = 1.561 g cm-3. In the presence of significant amounts of water, 7-coordinate compounds with mixed aquo-TMSA cation structures [Ln(TMSA)3(H2O)]3+ (Ln = Yb) and [Ln(TMSA)2(H2O)3]3+ (Ln = La, Pr, Nd, Eu, Yb) have been isolated with structural determinations by single-crystal X-ray diffraction obtained for the following species: Yb(C8H16N2O2)3(H2O)(CF3SO3)3, compound 6, monoclinic, P2(1)/n, a = 8.9443(3) A, b = 11.1924(4) A, c = 44.2517(13) A, beta = 93.264(1) degrees, Z = 4, Dcalcd = 1.735 g cm-3; Yb(C8H16N2O2)3(H2O)(ClO4)3, compound 7, monoclinic, Cc, a = 19.2312(6) A, b = 11.1552(3) A, c = 19.8016(4) A, beta = 111.4260(1) degrees, Z = 4, Dcalcd = 1.690 g cm-3; Yb(C8H16N2O2)2(H2O)3(CF3SO3)3, compound 8, triclinic, P1, a = 8.6719(1) A, b = 12.2683(2) A, c = 19.8094(3) A, alpha = 75.815(1) degrees, beta = 86.805(1) degrees, gamma = 72.607(1) degrees, Z = 2, Dcalcd = 1.736 g cm-3. Unlike in the analogous nitrate salts, only bidentate binding of the succinamide ligand to the lanthanide metal is observed. IR spectroscopy studies in anhydrous acetonitrile suggest that the solid-state structures of these Ln-TMSA compounds are maintained in solution.  相似文献   

3.
Metathesis of lanthanide tris di-tert-butyl beta-diketonates ([Ln(thd)3] Ln=Pr, Nd, Eu, Tb) with one or two equivalents of group 1 salts of the sulfur bridged binaphtholate dianion [1,1'-S(2-OC10H4But(2)-3,6)2]2-, [M2L], M=K, Li affords luminescent mono- and bis-ligand substituted complexes ML[LnL(thd)2].L; M=K, Ln=Pr , Nd , Eu and Tb (L=thf, diethyl ether or toluene) and M(thf)2[LnL2(thd)]; M=Li, Ln=Pr , Nd , Eu , Tb . The potassium salt [K2L] affords mono-L substituted complexes most cleanly, while the lithium salt [Li2L] yields the bis-L substituted complexes most cleanly. The L ligands function as antenna for the sensitised lanthanide-centred emission in Eu3+ and Tb3+ complexes. The X-ray single-crystal structures of mono- and bis-L lanthanide complexes of Nd3+ are presented.  相似文献   

4.
The promesogenic hexacatenar tridentate ligands L3(Cn) (I shape) and L4(Cn) (V shape) react with trivalent lanthanide trifluoroacetates, Ln((CF3CO2)3, to give either monometallic [Ln(Li(Cn))(CF3CO2)3] or trifluoroacetato-bridged bimetallic [Ln(Li(Cn))(CF3CO2)3]2 complexes in the solid state, as exemplified by the crystal structures of [Lu(L4(CO))(CF3CO2)3(H2O)], [Lu(L4(CO))(CF3CO2)3]2, and [La(L3(C4))(CF3CO2)3]2. Although the dimerization process is influenced by the competiting complexation of anions or solvent molecules, the coordination of CF3CO2- instead of NO3- to Ln(III) produces a significant lengthening of the Ln-N(ligand) bond distances. This translates into a considerable decrease of the affinity of the Li(C12) (i = 3, 4) ligands for Ln(CF3CO2)3 in solution, thus leading to significant dissociation of the [Ln(Li(C12))(CF3CO2)3] complexes at millimolar concentrations. The thermal properties of these complexes also suffer from their limited thermodynamic stability, and the thermotropic liquid crystalline phases produced at high temperatures reflect mixtures of different species. However, a hexagonal columnar organization characterizes the main component in the mesophases obtained with [Ln(L3(C12))(CF3CO2)3] at high temperature. A tentative interpretation of the small-angle X-ray scattering (SAXS) profiles suggests that disklike dimers of [Ln(L3(C12))(CF3CO2)3]2 are packed along the columnar axes. For [Ln(L4(C12))(CF3CO2)3], SAXS profiles are compatible with a lamellar organization in the mesophases originating from the existence of rodlike dimers of [Ln(L4(C12))(CF3CO2)3]2 as the major component in the liquid-crystal state.  相似文献   

5.
Two new tetraazamacrocyclic ligands are designed with the aim of sensitizing the luminescence of Tb(III) and Eu(III) ions in water: L5 [1,4,7,10-tetrakis[N-(phenacyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane] and L6 [1,4,7,10-tetrakis[N-(4-phenylphenacyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane]. These ligands react with lanthanide trifluoromethanesulfonates to yield stable 1:1 complexes in water (log K = 12.89 +/- 0.15 for EuL5). X-ray diffraction on [Tb(L5)(H(2)O)](CF(3)SO(3))(3) (P1 macro, a = 13.308(3) A, b = 14.338(3) A, c = 16.130(3) A, alpha = 101.37(3) degrees, beta = 96.16(3) degrees, gamma = 98.60(3) degrees ) shows the Tb(III) ion lying on a C(4) axis and being 9-coordinate, with one water molecule bound in its inner coordination sphere. The absolute quantum yields are determined in aerated water for the complexes formed with ions used in fluoroimmunoassays (Ln = Sm, Eu, Tb, and Dy). Large values are found for [Tb(H(2)O)(L5)](3+) and [Eu(H(2)O)(L6)](3+), in line with the molecular design of the receptors: 23.1% and 24.7%, respectively. The intense luminescence of these ions results from efficient intersystem crossing and L --> Ln energy transfer processes, as well as from a suitable shielding of the emitting ions from radiationless deactivation.  相似文献   

6.
[PrAl(CF3COO)2(CF3CHOO)(C2H5)2(C4H8O)2]2 Mr=1420.56, monoclinic, P21/n, a=10.651(6), b=24.276(9), c=11.110(5)(), β=107.650(4)°, V=2737.4(1)()3, Z=2, Dc=3.45 g/cm3, F(000)=2816, T=233K, MoKα radiation (λ=0.71069()), μ(MoKα)=38.017 cm-1, R=0.048 for 2847 observed reflections (I≥3σ(I)). It is isostructural with [LnAl(CF3COO)2(CF3CHOO)-R2(C4H8O)2]2 (Ln=Ho, R=Et; Ln=Nd, Y, R=iBu). Pr3+ is coordinated by eight oxygen atoms from five bridging ligands and two THF forming a distorted bicap-prism.  相似文献   

7.
Five different types of the lanthanide sulfate-carboxylates family, [La(2)(SO(4))(Himdc)(2)(H2O)2] , [Gd(2)(SO(4))(2)(Himdc)(H2O)3].H2O , [Ln(2)(SO(4))(2)(Himdc)(H2O)(3)].H2O (Ln = Gd3a, Eu3b), [Eu(6)Cu(SO(4))(6)(Himdc)(4)(H2O)(14)] , and [Ln(Himc)(SO(4))(H2O)] (Ln = Eu5a, Gd5b, Tb5c, Dy5d, Er5e); H(2)imc = 4-imidazolecarboxylic acid, H(3)imdc = 4,5-imidazoledicarboxylic acid) have been obtained by hydrothermal reactions of Ln(2)O(3), transition metal sulfates and H(3)imdc at 170 degrees C and characterized by means of elemental analyses, IR, TG analysis, luminescence spectroscopy and single crystal X-ray diffraction. The 3D structure of 1 is constructed from alternately linkages of organic {La(Himdc)} layers and inorganic {La(2)O(2)(SO(4))} layers, with the La atoms as hinges. 2 and 3a/3b both contain alternately arranged 1D left- and right-handed helical {Ln(imdc)} chains bridged by SO(4)(2-) anions to form a 3D framework with 1D rectangle-like channels along the b axis. The structural differences of 2 and 3a/3b lie in the linkages of the SO(4)(2-) anions. Complex 4 consists of 2D tubular Eu-sulfate layers pillared by {Cu(Himdc)(2)} units to generate a 3D network. Complexes 5a-5e possess 2D bamboo-raft-like layer structures based on helical tubes. Interestingly, H(2)imc comes from the in-situ decarboxylation of H(3)imdc in the hydrothermal reactions. The luminescence properties of the complexes 3a, 4, 5a 5c, 5d were investigated in solid state at room temperature.  相似文献   

8.
在乙醇体系中,由主配体4-[(1,3-二氧代丁基)氨基]苯甲酸(H2L,C11H11NO4)、稀土硝酸盐及辅助配体邻菲啰啉(phen)反应合成了两个系列8个配合物[Ln2(L)3(H2O)4]n(Ln=Sm(1),Eu(2),Tb(3),Dy(4));[Ln2(NO3)2(L)2(phen)2]n(Ln=Sm(5),Eu(6),Tb(7),Dy(8))。用元素分析、红外光谱、摩尔电导、热重分析进行表征,确定了产物的化学组成,推断了相应的结构。测定了室温时固体产物的激发和发射光谱,结果表明:由主辅配体共同配位的三元配合物的发光强度好于无辅助配体参与的二元配合物。测定了三元配合物的荧光寿命,其中铕和铽配合物显示较长的荧光寿命。  相似文献   

9.
A synthetic strategy is developed to attach semirigid lipophilic sidearms to the 6-positions of bent aromatic tridentate 2,6-bis(benzimidazol-2-yl)pyridine cores to produce U-shaped ligands, L6,7. Differential scanning calorimetry (DSC) reveals that entropic contributions severely affect the isotropization processes of these flexible receptors, but no mesomorphism is detected. The attachment of oxygen linkers to the 5- or 6-positions of the benzimidazole sidearms lowers the ligand-centered 1 pi pi* and 3 pi pi* excited states, and the semiempirical ZINDO method assigns this effect to a destabilization of the HOMO orbitals resulting from pi-interactions. Reactions of L6 with Ln(NO3)3.xH2O provide the rodlike 1:1 complexes [Ln(L6)(NO3)3] (Ln = La-Lu), which are stable in the solid state but partially dissociate in acetonitrile. The crystal structure of [Lu(L6)(NO3)3].CH3CN (18a, LuC63H84N9O13, monoclinic, P2(1)/n, Z = 4) reveals an I-shaped arrangement of the ligand strand arising from the meridional complexation of the bent tridentate unit to nine-coordinate Lu(III). The replacement of nitrate anions with trifluoroacetate anions gives the centrosymmetric dimer [Lu(L6)(CF3CO2)3]2 (23, Lu2C134H162N10O20F18, triclinic, P1, Z = 1), in which the symmetry-related Lu atoms are connected by two bridging carboxylates, leading to an H-shaped dimetallic edifice. These complexes [Ln(L6)(NO3)3] and [Ln(L6)(CF3CO2)3]2 fulfill the geometrical criteria required by precursors of calamitic metallomesogens, but no mesomorphism can be detected, while photophysical studies indicate that the low energies of ligand-centered 3 pi pi* excited states drastically limit the luminescence of Eu(III) complexes. The relationships between structural and electronic properties resulting from 5- or 6-substitutions of the benzimidazole rings and the effects of these substitutions on photophysical and thermal properties are discussed.  相似文献   

10.
The reduction of selected lanthanide cations to the zerovalent state in the room-temperature ionic liquid [Me3N(n)Bu][TFSI] is reported (where TFSI = bistriflimide, [N(SO2CF3)2]-). The lanthanide cations were introduced to the melt as the TFSI hydrate complexes [Ln(TFSI)3(H2O)3] (where Ln = La(III), Sm(III) or Eu(III)). The lanthanum compound [La(TFSI)3(H2O)3] has been crystallographically characterized, revealing the first structurally characterized f-element TFSI complex. The lanthanide in all three complexes was shown to be reducible to the metallic state in [Me3N(n)Bu][TFSI]. For both the Eu and Sm complexes, reduction to the metallic state was achieved via divalent species, and there was an additional observation of the electrodeposition of Eu metal.  相似文献   

11.
Reactions of 1,4,7-triazacyclononane-1,4,7-triyl-tris(methylenephosphonic acid) [notpH(6), C(9)H(18)N(3)(PO(3)H(2))3] with different lanthanide salts result in four types of Ln-notp compounds: [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(NO(3))(H(2)O)].4H2O (1), [Ln = Eu (1 Eu), Gd (1 Gd), Tb (1 Tb)], [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(H2O)]Cl.3H2O (2) [Ln = Eu (2 Eu), Gd (2 Gd), Tb (2 Tb)], [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(H2O)]ClO4.8H2O, (3) [Ln = Eu (3 Eu), Gd (3 Gd)], and [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(H2O)]ClO4.3H2O (4), [Ln = Gd (4 Gd), Tb (4 Tb)]. Compounds within each type are isostructural. In compounds 1, dimers of {Ln2(notpH4)2(NO3)2(H2O)2} are found, in which the two lanthanide atoms are connected by two pairs of O-P-O and one pair of mu-O bridges. The NO3- ion serves as a bidentate terminal ligand. Compounds 2 contain similar dimeric units of {Ln2(notpH4)2(H2O)2} that are further connected by a pair of O-P-O bridges into an alternating chain. The Cl- ions are involved in the interchain hydrogen-bonding networks. A similar chain structure is also found in compounds 3; in this case, however, the chains are linked by ClO4- counterions through hydrogen-bonding interactions, forming an undulating layer in the (011) plane. These layers are fused through hydrogen-bonding interactions, leading to a three-dimensional supramolecular network with large channels in the [100] direction. Compounds 4 show an interesting brick-wall-like layer structure in which the neighboring lanthanide atoms are connected by a pair of O-P-O bridges. The ClO4- counterions and the lattice water molecules are between the layers. In all compounds the triazamacrocyclic nitrogen atoms are not coordinated to the Ln(III) ions. The anions and the pH are believed to play key roles in directing the formation of a particular structure. The fluorescence spectroscopic properties of the Eu and Tb compounds, magnetic properties of the Gd compounds, and the catalytic properties of 4 Gd were also studied.  相似文献   

12.
Lanthanide (Ln) oxides and cadmium (Cd) salts as sources of metals provided the first series of luminescent Ln-Cd-organic frameworks, [LnCd(imdc)(SO4)(H2O)3].0.5H2O (Ln = Tb, Eu, Dy, Gd, Er, Yb, Y, Nd, Pr; H3imdc = 4,5-imidazoledicarboxylic acid), in which the Ln atoms are linked by imdc ligands with skew coordination orientation, resulting in novel hetero-metallic-organic frameworks with left-/right-handed helical tubes (L1/R1) and channels (L2/R2) along the b axis.  相似文献   

13.
The segmental bidentate-tridentate-bidentate ligand L2 reacts with M(II) (M = Cr, Zn) and Ln(III) (Ln = La, Eu, Gd, Tb, Lu) to give the heterotrimetallic triple-stranded helicates [MLnM(L2)3]7+. For M = Zn(II), the isolated complexes [ZnLnZn(L2)3](CF3SO3)7 (Ln = Eu, Tb) display only lanthanide-centred luminescence arising from the pseudo-tricapped trigonal prismatic LnN9 coordination site. For M = Cr(II), rapid air oxidation provides Cr(III) and leads to the isolation of inert [CrLnCr(L2)3](CF3SO3)9 (Ln = Eu, Tb) complexes, in which divergent intramolecular Ln --> Cr energy transfers can be evidenced. Taking [ZnEuZn(L2)3]7+ as a luminescent standard for Eu-centred emission, a quantitative treatment of the energy migration processes indicates that the rate constant characterizing the Eu --> Cr energy transfer is more efficient in the trimetallic system, than in the analogous simple bimetallic edifice. Particular attention is focused on potential control of directional energy transfer processes in Cr-Ln pairs.  相似文献   

14.
Chemoselective synthesis and isolation of alkynyl [Cp*Ir(III)(bpy)CCPh]+ (2, Cp* = eta5-C5Me5, bpy = 2,2'-bipyridine), acyl [Cp*Ir(III)(bpy)C(O)CH2Ph]+ (3), and ketonyl [Cp*Ir(III)(bpy)CH2C(O)Ph]+ (4) intermediates in anti-Markovnikov and Markovnikov hydration of phenylacetylene in water have been achieved by changing the pH of the solution of a water-soluble aqua complex [Cp*Ir(III)(bpy)(H2O)]2+ (1) used as the same starting complex. The alkynyl complex [2]2.SO4 was synthesized at pH 8 in the reaction of 1.SO4 with H2O at 25 degrees C, and was isolated as a yellow powder of 2.X (X = CF3SO3 or PF6) by exchanging the counteranion at pH 8. The acyl complex [3]2.SO4 was synthesized by changing the pH of the aqueous solution of [2]2.SO4 from 8 to 1 at 25 degrees C, and was isolated as a red powder of 3.PF6 by exchanging the counteranion at pH 1. The hydration of phenylacetylene with 1.SO4 at pH 4 at 25 degrees C gave a mixture of [2]2.SO4 and [4]2.SO4. After the counteranion was exchanged from SO4(2-) to CF3SO3-, the ketonyl complex 4.CF3SO3 was separated from the mixture of 2.CF3SO3 and 4.CF3SO3 because of the difference in solubility at pH 4 in water. The structures of 2-4 were established by IR with 13C-labeled phenylacetylene (Ph12C13CH), electrospray ionization mass spectrometry (ESI-MS), and NMR studies including 1H, 13C, distortionless enhancement by polarization transfer (DEPT), and correlation spectroscopy (COSY) experiments. The structures of 2.PF6 and 3.PF6 were unequivocally determined by X-ray analysis. Protonation of 3 and 4 gave an aldehyde (phenylacetaldehyde) and a ketone (acetophenone), respectively. Mechanism of the pH-selective anti-Markovnikov vs Markovnikov hydration has been discussed based on the effect of pH on the formation of 2-4. The origins of the alkynyl, acyl, and ketonyl ligands of 2-4 were determined by isotopic labeling experiments with D2O and H2(18)O.  相似文献   

15.
黄维垣  张龙庆 《化学学报》1988,46(3):234-238
本文合成了α'-三氟甲基-含氟β-二酮镧系螯合物Ln{CF3CF2[CF2OCF(CF3)]nCOCHCOC(CH3)3}3[n=1; Ln=Eu(1a), Pr(1b), Nd(1c),Sm(1d), Gd(1e), Tb(1f), Dy(1g), Er(1h). n=2; Ln=Eu(2a), Pr(2b), Nd(2c),Sm(2d), Gd(2e), Tb(2f), Dy(2g), Er(2h)], 并研究了它们的位移性能. 1a、1b、2a和2b在用作位移试剂时, 不仅具备Ln(fod)3(Ln=Eu, Pr)的所有优点, 而且还有另外两个优点: (1)在底物存在时, 试剂自身的叔丁基峰明显向高场迁移, 特别是在醇类化合物存在下, δ-Bu^t接近于0ppm, 因此, 1a和2a的t-Bu峰总是处于底物ω-甲基的高场, 不干扰图谱的解析. (2)1b和2b虽为镨类螯合物, 但与1a与2a一样, 都能得到非常清晰的一级图谱. c、f和g均使谱峰向高场迁移, 而h却使谱峰向低场迁移. c的位移能力略低于b. f、g和h的位移能力极强.  相似文献   

16.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

17.
Heterobimetallic Lewis acids M 3(THF) n (BINOLate) 3Ln [M = Li, Na, K; Ln = lanthanide(III)] are exceptionally useful asymmetric catalysts that exhibit high levels of enantioselectivity across a wide range of reactions. Despite their prominence, important questions remain regarding the nature of the catalyst-substrate interactions and, therefore, the mechanism of catalyst operation. Reported herein are the isolation and structural characterization of 7- and 8-coordinate heterobimetallic complexes Li 3(THF) 4(BINOLate) 3Ln(THF) [Ln = La, Pr, and Eu], Li 3(py) 5(BINOLate) 3Ln(py) [Ln = Eu and Yb], and Li 3(py) 5(BINOLate) 3La(py) 2 [py = pyridine]. Solution binding studies of cyclohexenone, DMF, and pyridine with Li 3(THF) n (BINOLate) 3Ln [Ln = Eu, Pr, and Yb] and Li 3(DMEDA) 3(BINOLate) 3Ln [Ln = La and Eu; DMEDA = N, N'-dimethylethylene diamine] demonstrate binding of these Lewis basic substrate analogues to the lanthanide center. The paramagnetic europium, ytterbium, and praseodymium complexes Li 3(THF) n (BINOLate) 3Ln induce relatively large lanthanide-induced shifts on substrate analogues that ranged from 0.5 to 4.3 ppm in the (1)H NMR spectrum. X-ray structure analysis and NMR studies of Li 3(DMEDA) 3(BINOLate) 3Ln [Ln = Lu, Eu, La, and the transition metal analogue Y] reveal selective binding of DMEDA to the lithium centers. Upon coordination of DMEDA, six new stereogenic nitrogen centers are formed with perfect diastereoselectivity in the solid state, and only a single diastereomer is observed in solution. The lithium-bound DMEDA ligands are not displaced by cyclohexenone, DMF, or THF on the NMR time scale. Use of the DMEDA adduct Li 3(DMEDA) 3(BINOLate) 3La in three catalytic asymmetric reactions led to enantioselectivities similar to those obtained with Shibasaki's Li 3(THF) n (BINOLate) 3La complex. Also reported is a unique dimeric [Li 6(en) 7(BINOLate) 6Eu 2][mu-eta (1),eta (1)-en] structure [en = ethylenediamine]. On the basis of these studies, it is hypothesized that the lanthanide in Shibasaki's Li 3(THF) n (BINOLate) 3Ln complexes cannot bind bidentate substrates in a chelating fashion. A hypothesis is also presented to explain why the lanthanide catalyst, Li 3(THF) n (BINOLate) 3La, is often the most enantioselective of the Li 3(THF) n (BINOLate) 3Ln derivatives.  相似文献   

18.
Eight new compounds based on [O3PCH2PO3]4- ligands and {MoV2O4} dimeric units have been synthesized and structurally characterized. Octanuclear wheels encapsulating various guests have been isolated with different counterions. With NH4+, a single wheel was obtained, as expected, with the planar CO32- guest, (NH4)12[(MoV2O4)4(O3PCH2PO3)4(CO3)2].24H2O (1a), while with the pyramidal SO32- guest, only the syn isomer (NH4)12[(MoV2O4)4(O3PCH2PO3)4(SO3)2].26H2O (2a) was characterized. The corresponding anti isomer was obtained with Na+ as counterions, Na12[(MoV2O4)4(O3PCH2PO3)4(SO3)2]39H2O (2b), and with mixed Na+ and NH4(+) counterions, Na+(NH4)11[(MoV2O4)4(O3PCH2PO3)4(SO3)2].13H2O (2d). With [O3PCH2PO3]4- extra ligands, the octanuclear wheel Li12(NH4)2[(MoV2O4)4(O3PCH2PO3)4(HO3PCH2PO3)2].31H2O (4a) was isolated with Li+ and NH4+ counterions and Li14[(MoV2O4)4(O3PCH2PO3)4(HO3PCH2PO3)2].34H2O (4c) as a pure Li+ salt. A new rectangular anion, formed by connecting two MoV dimers and two MoVI octahedra via methylenediphosphonato ligands with NH4+ as counterions, (NH4)10[(MoV2O4)2(MoVIO3)2(O3PCH2PO3)2(HO3PCH2PO3)2].15H2)O (3a), and Li9(NH4)2Cl[(MoV2O4)2(MoVIO3)2(O3PCH2PO3)2]. 22H2O (3d) as a mixed NH4+ and Li+ salt have also been synthesized. The structural characterization of the compounds, combined with a study of their behavior in solution, investigated by 31P NMR, has allowed a discussion on the influence of the counterions on the structure of the anions and their stability. Density functional theory calculations carried out on both isomers of the [(MoV2O4)4(O3PCH2PO3)4(SO3)2]12- anion (2), either assumed isolated or embedded in a continuum solvent model, suggest that the anti form is favored by approximately 2 kcal mol(-1). Explicit insertion of two solvated counterions in the molecular cavity reverses this energy difference and reduces it to less than 1 kcal mol(-1), therefore accounting for the observed structural versatility.  相似文献   

19.
A new bis-β-diketone, 3,3'-bis(4,4,4-trifluoro-1,3-dioxobutyl)biphenyl (BTB), has been designed and prepared for the synthesis of a series of dinuclear lanthanide complexes [Ln(2)(BTB)(3)(C(2)H(5)OH)(2)(H(2)O)(2)] [Ln = Eu (1), Gd (2)], [Ln(2)(BTB)(3)(DME)(2)] [Ln = Nd (3), Yb (4); DME = ethylene glycol dimethyl ether] and [Eu(2)(BTB)(3)(L)(2)] [L = 2,2-bipydine (5); 1,10-phenanthroline (6); 4,7-diphenyl-1,10-phenanthroline (7)]. Complexes 1-7 have been characterized by various spectroscopic techniques and their photophysical properties are investigated. X-ray crystallographical analysis reveals that complexes 1, 3 and 4 adopt triple-stranded dinuclear structures which are formed by three bis-bidentate ligands with two lanthanide ions. The complexes 1 and 3-7 display strong visible red or NIR luminescence upon irradiation at ligand band around 372 nm, depending on the choice of the lanthanide. The solid-state photoluminescence quantum yields and the lifetimes of Eu(3+) complexes are determined and described.  相似文献   

20.
Jia D  Zhao Q  Zhang Y  Dai J  Zuo J 《Inorganic chemistry》2005,44(24):8861-8867
New lanthanide thioantimonate(V) compounds, [Ln(en)3(H2O)x(mu(3-x)-SbS4)] (en = ethylenediamine, Ln = La, x = 0, Ia; Ln = Nd, x = 1, Ib) and [Ln(en)4]SbS4.0.5en (Ln = Eu, IIa; Dy, IIb; Yb, IIc), were synthesized under mild solvothermal conditions by reacting Ln2O3, Sb, and S in en at 140 degrees C. These compounds were classified as two types according to the molecular structures. The crystal structure of type I (Ia and Ib) consists of one-dimensional neutral [Ln(en)3(H2O)x(mu(3-x)-SbS(4))]infinity (x = 0 or 1) chains, in which SbS4(3-) anions act as tridentate or bidentate bridging ligands to interlink [Ln(en)3]3+ ions, while the crystal structure of type II (IIa, IIb, and IIc) contains isolated [Ln(en)4]3+ cations, tetrahedral SbS4(3-) anions, and free en molecules. A systematic investigation of the crystal structures of the five lanthanide compounds, as well as two reported compounds, clarifies the relationship between the molecular structure and the entity of the lanthanide(III) series, such as the stability of the lanthanide(III)-en complexes, the coordination number, and the ionic radii of the metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号