首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Cu(I)/Cu(II)/Zn(II) mixed-valent [Cu(en)2][Zn(NC)4(CuCN)2] polymer, which has a 2-D layer structure with six structurally inequivalent cyanides in four distinct bonding modes, has been prepared; structurally informative 13C and 15N MAS NMR spectra of this paramagnetic system are readily observable.  相似文献   

2.
Knowledge of the complexes formed by N-coordinating ligands and Cu(II) ions is of relevance in understanding the interactions of this ion with biomolecules. Within this framework, we investigated Cu(II) complexation with mono- and polydentate ligands, such as ammonia, ethylenediamine (en), and phthalocyanine (Pc). The obtained Cu-N coordination distances were 2.02 A for [Cu(NH(3))(4)](2+), 2.01 A for [Cu(en)(2)](2+), and 1.95 A for CuPc. The shorter bond distance found for CuPc is attributed to the macrocyclic effect. In addition to the structure of the first shell, information on higher coordination shells of the chelate ligands could be extracted by EXAFS, thus allowing discrimination among the different coordination modes. This was possible due to the geometry of the complexes, where the absorbing Cu atoms are coplanar with the four N atoms forming the first coordination shell of the complex. For this reason multiple scattering contributions become relevant, thus allowing determination of higher shells. This knowledge has been used to gain information about the structure of the 1:2 complexes formed by Cu(II) ions with the amino acids histidine and glycine, both showing a high affinity for Cu(II) ions. The in-solution structure of these complexes, particularly that with histidine, is not clear yet, probably due to the various possible coordination modes. In this case the square-planar arrangements glycine-histamine and histamine-histamine as well as tetrahedral coordination modes have been considered. The obtained first-shell Cu-N coordination distance for this complex is 1.99 A. The results of the higher shells EXAFS analysis point to the fact that the predominant coordination mode is the so-called histamine-histamine one in which both histidine molecules coordinate Cu(II) cations through N atoms from the amino group and from the imidazole ring.  相似文献   

3.
A covellite mineral sample from Coquimbo region, Chile is used in the present study. An electron paramagnetic resonance (EPR) study on powdered sample confirms the presence of Mn(II) and Cu(II). Optical absorption spectrum indicates that Fe(II) and Cu(II) impurities are present in octahedral structure. Bands in the near-infrared from 7,000 to 5,000 cm(-1) result from the overtones of the first fundamental OH-stretching modes.  相似文献   

4.
The infrared and Raman spectra of the light blue modification of anhydrous copper(II) formate, Cu(HCOO)2, and copper(II) formate-d2, Cu(DCOO)2, are reported, as well as the Raman spectra of copper(II) formate tetrahydrate Cu(HCOO)2 · 4H2O and copper(II) formate tetrahydrate-d8 Cu(HCOO)2 · 4D2O over a wide range of temperatures. In the latter two compounds, the fundamental formate modes, active in the Raman spectra, showed splittings when the phase transition temperature was traversed. These low-temperature Raman spectra were interpreted in terms of a P21 space group and prove that the phase transition not only involves an ordering in the orientation of the water molecules, but also displacements of the heavy atoms. Only a limited number of weak translational modes of the water molecules could be identified in the Raman spectra of the copper(II) formate tetrahydrate, and it is not possible therefore to determine exactly how ordering affects the Raman-active lattice modes of these molecules.  相似文献   

5.
Four novel mixed ligand complexes of Cu(II), Co(II), Ni(II) and Zn(II) with saccharin and nicotinamide were synthesised and characterised on the basis of elemental analysis, FT-IR spectroscopic study, UV–Vis spectrometric and magnetic susceptibility data. The structure of the Cu (II) complex is completely different from those of the Co(II), Ni(II) and Zn(II) complexes. From the frequencies of the saccharinato CO and SO2 modes, it has been proven that the saccharinato ligands in the structure of the Cu complex are coordinated to the metal ion ([Cu(NA)2(Sac)2(H2O)], where NA — nicotinamide, Sac — saccharinato ligand or ion), whilst in the Co(II), Ni(II) and Zn(II) complexes are uncoordinated and exist as ions ([M(NA)2(H2O)4](Sac)2).  相似文献   

6.
The interaction of amyloid-β (Aβ) peptide with Cu(II) appears to play an important role in the etiology of Alzheimer's disease. At physiological pH, the Cu(II) coordination in Aβ is heterogeneous, and there exist at least two binding modes in which Cu(II) is coordinated by histidine residues. Electron spin resonance studies have revealed a picture of the Cu(II) binding at a higher or lower pH, where only one of the two binding modes is almost exclusively present. We describe a procedure to directly examine the coordination of Cu(II) to each histidine residue in the dominant binding mode at physiological pH. We use nonlabeled and residue-specifically (15)N-labeled Aβ(1-16). For quantitative analysis, the intensities of three-pulse electron spin-echo envelope modulation (ESEEM) spectra are analyzed. Spectral simulations show that ESEEM intensities provide information about the contribution of each histidine residue. Indeed, the ESEEM experiments at pH 6.0 confirm the dominant contribution of His6 to the Cu(II) coordination as expected from the work of other researchers. Interestingly, however, the ESEEM data obtained at pH 7.4 reveal that the contributions of the three residues to the Cu(II) coordination are in the order of His14 ≈ His6 > His13 in the dominant binding mode. The order indicates a significant contribution from the simultaneous coordination by His13 and His14 at physiological pH, which has been underappreciated. These findings are supported by hyperfine sublevel correlation spectroscopy experiments. The simultaneous coordination by the two adjacent residues is likely to be present in a non-β-sheet structure. The coexistence of different secondary structures is possibly the molecular origin for the formation of amorphous aggregates rather than fibrils at relatively high concentrations of Cu(II). Through our approach, precise and useful information about Cu(II) binding in Aβ(1-16) at physiological pH is obtained without any side-chain modification, amino acid residue replacement, or pH change, each of which might lead to an alteration in the peptide structure or the coordination environment.  相似文献   

7.
A Schiff base derived from 2-oxo-quinoline-3-carbaldehyde-4-aminophenazone and its Cu(II), Zn(II) and Ni(II) complexes were synthesized. The molecular structures of the Zn(II) and Ni(II) complexes were determined by X-ray crystal diffraction. The DNA-binding modes of the compounds were investigated by spectroscopic methods, viscosity measurements and ethidium bromide-DNA displacement experiments. The experimental evidence indicated the compounds interact with calf thymus DNA through intercalation. Additionally, the compounds exhibited potential antioxidant properties in in vitro studies, and the Cu(II) complex was the most effective. The solid-state fluorescence properties of the Zn(II) complex were studied.  相似文献   

8.
A six-coordinate copper(II) complex with the ligand 1,3-bis(1-methylbenzimidazol-2-yl)-2-oxopropane (Meobb), with composition [Cu(Meobb)(2)](NO(3))(2)·2CH(3)OH, has been synthesized and characterized by elemental analysis, electrical conductivities, IR, UV-Vis spectral measurements. A study of the electro-chemistry of the copper(II) complex was carried out by using cyclic voltammetry. The molecular structures of the ligand Meobb and the Cu(II) complex were determined by X-ray crystal diffraction. The DNA-binding modes of the ligand and the complex were investigated by electronic absorption titration, ethidium bromide-DNA displacement experiments and viscosity measurements. The experimental evidence indicated the compounds interact with calf thymus DNA through intercalation. Additionally, the Cu(II) complex exhibited potential antioxidant properties in in vitro studies.  相似文献   

9.
Binuclear metal-to-metal charge-transfer (MMCT) moieties consisting of a Ti and a Cu(I) or a Ti and a Sn(II) center were obtained in a MCM-41 silicate sieve along with isolated metal centers when exposing Ti-grafted MCM-41 to Cu(I) or Sn(II) precursors featuring highly labile CH3CN ligands. Fourier transform infrared (FT-IR) spectroscopy revealed complete removal of the labile CH3CN ligands of the metal precursor and the formation of Cu(I)-O-Ti, Cu(I)-O-Si, and corresponding Sn(II) linkages on the pore surface. Optical and FT-IR difference spectroscopy upon oxidation of Cu(I) (Sn(II)) allowed assignment of the Cu(I)-O (642 cm(-1)) and Sn(II)-O (610 cm(-1)) bond modes of the MMCT moiety. The visible-light-absorbing Ti(IV)-O-Cu(I) MMCT chromophore extends from the UV to 600 nm, the corresponding Ti(IV)-O-Sn(II) absorption to 470 nm. Electron paramagnetic resonance monitoring of the TiSn(II)-MCM-41 sieve following photoexcitation of the MMCT transitions at cryogenic temperature confirmed that Ti is reduced to Ti(III) under visible light. Assembly of inorganic MMCT sites inside high-surface-area mesoporous silicates with each metal in a preselected oxidation state opens up activation of catalytically important metal centers under visible light.  相似文献   

10.
A new 3D Cu(II) complex [Cu1.5(N3)2(isonicotinate)]n [1], which features two types of bridging modes for azide (mu(1,1) and the rare asymmetric mu(1,1,3)) where the three bonds of the mu(1,1,3)-N3(-) group to Cu exhibit three different distances, has been synthesized and characterized, and magnetic measurements indicate that [1] experiences long-range ferromagnetic ordering at approximately 6 K.  相似文献   

11.
The reaction products of metal(II) salts with 5-sulphamethoxazoleazo-3-phenyl-2-thioxo-4-thiazolidinone (H2L) have been characterized by elemental analyses, magnetic susceptibility, electronic, infrared and electron paramagnetic resonance spectral measurements. The spectral data suggest a square pyramidal structure for Cu(II) and Co(II) complexes and an octahedral for Ni(II) complexes. Various EPR parameters have been calculated. From the electron paramagnetic resonance and spectral data, the orbital reduction factors were calculated. In all case kperpendicular > kparallel which indicates a 2B1g ground state. These five coordinated complex of Cu(II) react further with pyridine forming six coordinate base adduct. The different modes of chelation of the ligand and stereochemistry around the metal ion are discussed.  相似文献   

12.
New bimetallic copper(I) and copper(II) complexes of dipyrromethane-derived Schiff base macrocycles are reported. Two different structural motifs were identified, providing support for the notion that ligands of this type can support a variety of coordination modes. In the case of the Cu(I) complexes, the metal centers were found to have a distorted tetrahedral geometry and be coordinated to two imine nitrogens on each side of the ligand, with the exact structure depending on the choice of Schiff base macrocycle. In contrast to what is seen for Cu(I), with Cu(II) as the coordinated cation the Cu(II) metal centers assumed distorted square planar geometries, and both pyrrole N-Cu and imine N-Cu interactions were confirmed by single-crystal X-ray diffraction analysis. This structural analysis revealed a copper-copper distance of 3.47 A, while SQUID magnetic susceptibility data provided evidence for antiferromagnetic coupling between the two metal centers.  相似文献   

13.
A new asymmetric Salamo‐based ligand H2L was synthesized using 3‐tertbutyl‐salicylaldehyde and 6‐methoxy‐2‐[O‐(1‐ethyloxyamide)]‐oxime‐1‐phenol. By adjusting the ratio of the ligand H2L and Cu (II), Co (II), and Ni (II) ions, mononuclear, dinuclear, and trinuclear transition metal (II) complexes, [Cu(L)], [{Co(L)}2], and [{Ni(L)(CH3COO)(CH3CH2OH)}2Ni] with the ligand H2L possessing completely different coordination modes were obtained, respectively. The optical spectra of ligand H2L and its Cu (II), Co (II) and Ni (II) complexes were investigated. The Cu (II) complex is a mononuclear structure, and the Cu (II) atom is tetracoordinated to form a planar quadrilateral structure. The Co (II) complex is dinuclear, and the two Co (II) atoms are pentacoordinated and have coordination geometries of distorted triangular bipyramid. The Ni (II) complex is a trinuclear structure, and the terminal and central Ni (II) atoms are all hexacoordinated, forming distorted octahedral geometries. Furthermore, optical properties including UV–Vis, IR, and fluorescence of the Cu (II), Co (II), and Ni (II) complexes were investigated. Finally, the antibacterial activities of the Cu (II), Co (II), and Ni (II) complexes were explored. According to the experimental results, the inhibitory effect was found to be enhanced with increasing concentrations of the Cu (II), Co (II), and Ni (II) complexes.  相似文献   

14.
A new adsorbent is synthesized on the basis of silica consecutively modified by polyhexamethylene guanidine and 4,5-dihydroxy-1,3-benzenedisulfonic acid (Tiron) for the group preconcentration of Fe(III), Al(III), Cu(II), Pb(II), Zn(II), and Mn(II) followed by determination by inductively coupled plasma atomic emission spectrometry. The adsorbent in the batch mode quantitatively (recovery 98?99%) extracts Fe(III), Al(III) and Cu(II) ions at pH 4.0 and Fe(III), Al(III), Cu(II), Pb(II), Zn(II), and Mn(II) ions at pH 7.0; the time of attainment of an adsorption equilibrium does not exceed 10 min. Consecutive preconcentration at pH 4.0 and 7.0 in the batch and dynamic modes ensures the quantitative separation of Fe(III), Al(III), and Cu(II) from Pb(II), Zn(II), and Mn(II) and their separate determination. The quantitative desorption of metals was attained with 0.5?1.0 M HNO3 (5 or 10 mL). In preconcentration from 200 mL of solution with 5 mL of a desorbing solution, the preconcentration coefficient was equal to 40. The developed procedure was used for the determination of metal ions in river waters of Krasnoyarsk Krai. The results obtained were verified by the added?found method.  相似文献   

15.
4-Ethylthiosemicarbazide and its NH(1) derivatives have been prepared and confirmed by elemental analysis and 1H?NMR spectra to produce diverse complexes with Co(II), Ni(II) and Cu(II) ions. The obtained complexes have been investigated based on elemental and thermal analyses, spectral (UV/VIS, ESR, mass) studies and magnetic measurements. The IR data reveal the presence of variable modes of chelation for the investigated ligands. The electronic spectra of the complexes as well as their magnetic moments provide information about geometries. The ESR spectra give evidence for the proposed structure and the bonding for some Cu(II) complexes. Thermal decomposition of some complexes ended with metal or metal oxide as a final product.  相似文献   

16.
Judas N  Raos N 《Inorganic chemistry》2006,45(13):4892-4894
A copper(II) complex with 1-aminocyclopropane-1-carboxylic acid assembles by apical Cu...O bonds and hydrogen-bonding interactions into discrete trimeric units that exhibit both cis and trans binding modes.  相似文献   

17.
The anionic complexes [Cu(L(1-))3](1-), L(-)=dopasemiquinone or L-dopasemiquinone, were prepared and characterized. The complexes are stable in aqueous solution showing intense absorption bands at ca. 605 nm for Cu(II)-L-dopasemiquinone and at ca. 595 nm for Cu(II)-dopasemiquinone in the UV-vis spectra, that can be assigned to intraligand transitions. Noradrenaline and adrenaline, under the same reaction conditions, did not yield Cu-complexes, despite the bands in the UV region showing that noradrenaline and adrenaline were oxidized during the process. The complexes display a resonance Raman effect, and the most enhanced bands involve ring modes and particularly the nuCC+nuCO stretching mode at ca. 1384 cm(-1). The free radical nature of the ligands and the oxidation state of the Cu(II) were confirmed by the EPR spectra that display absorptions assigned to organic radicals with g=2.0005 and g=2.0923, and for Cu(II) with g=2.008 and g=2.0897 for L-dopasemiquinone and dopasemiquinone, respectively. The possibility that dopamine and L-dopa can form stable and aqueous-soluble copper complexes at neutral pH, whereas noradrenaline and adrenaline cannot, may be important in understanding how Cu(II)-dopamine crosses the cellular membrane as proposed in the literature to explain the role of copper in Wilson disease.  相似文献   

18.
The interaction between the single hexarepeat unit of chicken prion protein [ChPrP(54-59)] and Cu(II) was investigated by NMR, finding different coordination modes for the trans/trans and cis/trans isomers.  相似文献   

19.
Lan YQ  Li SL  Wang XL  Shao KZ  Du DY  Zang HY  Su ZM 《Inorganic chemistry》2008,47(18):8179-8187
Six polyoxometalate (POM)-based hybrid materials have been designed and synthesized based on octamolybdate building blocks and copper-organic units at different pH values under hydrothermal conditions, namely, [H2bbi][Cu(II)(bbi)2(beta-Mo8O26)] (1), [Cu(II)(bbi)2(H2O)(beta-Mo8O26)0.5] (2), [Cu(II)(bbi)2(alpha-Mo8O26)][Cu(I)(bbi)]2 (3), [Cu(II)Cu(I)(bbi)3(alpha-Mo8O26)][Cu(I)(bbi)] (4), [Cu(I)(bbi)]2[Cu(I)2(bbi)2(delta-Mo8O26)0.5][alpha-Mo8O26]0.5 (5), and [Cu(I)(bbi)][Cu(I)(bbi)(theta-Mo8O26)0.5] (6), where bbi is 1,1'-(1,4-butanediyl)bis(imidazole). Their crystal structures have been determined by X-ray diffraction. In compound 1, the bbi ligands with bis-monodentate coordination modes link Cu(II) cations to generate a 2D copper-organic unit with (4, 4) net, which is pillared by the (beta-Mo8O26)(4-) anions to form a 3D framework with alpha-Po topology. The similar copper-organic units are connected alternately by (beta-Mo8O26)(4-) anions to generate a 3D 2-fold interpenetrating (4,6)-connected framework with (4(4) x 6(2))(4(4) x 6(10) x 8) topology in compound 2. Compounds 3 and 4 are supramolecular isomers with polythreaded topology. If Cu (I)...O interactions are considered, the structure of 3 is a novel self-penetrating (3,4,6)-connected framework with (5(2) x 8)2(5(4) x 6 x 8)(4(4) x 6(10) x 10) topology, and the structure of 4 is a (4,6)-connected framework with (4(2) x 6(3) x 7)(5.6(4) x 8)(4(2) x 5(6) x 6(6) x 8)(4(2) x 5(6) x 6(4) x 7 x 8(2)) topology. Different from compounds 3 and 4, compounds 5 and 6 are supramolecular isomers with polythreaded topology based on different octamolybdate isomers. By careful inspection of the structures of 1-6, it is believed that various copper-organic units, which are formed by bbi ligands combined with Cu(II)/Cu(I) cations, octamolybdates with different types and coordination modes, and the nonbonding interactions between polyanions and copper-organic units are important for the formation of the different structures. In addition, with step by step increasing of the amount of organic amine, we have achieved the transformation of Cu(II) ions into Cu(I) ones in different degrees in POMs-based metal-organic frameworks (MOFs) for the first time. The infrared spectra, X-ray powder diffraction, and thermogravimetric analyses have been investigated in detail for all compounds, and the luminescent properties have been also been investigated for compounds 3 and 4.  相似文献   

20.
Atenolol and propranolol (the β-blocking agents) and salbutamol (broncho- and vasodilator) were resolved into their enantiomers by adopting different modes of loading/impregnating the Cu(II) complexes of l-proline (l-Pro), l-phenylalanine (l-Phe), l-histidine (l-His), N,N-dimethyl-l-phenylalanine (N,N-Me2-l-Phe), and l-tryptophan (l-Trp) on commercial precoated normal phase plates. The three different approaches were (A) using the Cu(II)-l-amino acid complex as chiral mobile phase additive, (B) ascending development of plain commercial plates in the solutions of Cu complex, and (C) using a solution of Cu(II) acetate as mobile phase additive for the commercial TLC plates impregnated with ascending development of plates in the solutions of amino acid. Spots were located using iodine vapour. The results obtained for the three methods have been compared for their efficiency and the issue of involvement of the Cu(II) cation for the best performance of the three methods has been discussed with respect to the same mobile phase. The detection limit is 0.18 μg for each enantiomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号